簡易檢索 / 詳目顯示

研究生: 洪彧珩
Yu-Heng Hung
論文名稱: 以靜電紡絲法製備碳黑/石墨烯/聚氨酯奈米複合薄膜之超疏水表面、高導電性及智慧衣感測元件之應用
Preparation of Superhydrophobic Surface, High Conductivity and Intelligent Senor for Carbon Black/ Graphene / Polyurethane Nanocomposite Films by Electrospinning
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 游進陽
Chin-Yang Yu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 124
中文關鍵詞: 聚氨酯碳黑石墨烯心電圖超疏水靜電紡絲
外文關鍵詞: polyurethane, carbon black, graphene, superhydrophobic, electrospinning, electrocardiogram
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的為以靜電紡絲法製備聚氨酯(Polyurethane, PU)奈米纖維薄膜,經由製程可以得到質量輕、具彈性,同時擁有高比表面積的纖維薄膜;但PU屬於絕緣性的高分子材料,因此我們利用不同維度的碳材加以表面改質及纖維混紡,形成導電高分子纖維薄膜,運用在智慧衣感測元件量測人體訊號。
    本研究分為兩部份,第一部份利用靜電紡絲法先製備聚氨酯奈米纖維薄膜,再於表面塗佈利用自行合成的星形油溶性高分子分散劑分散過後的碳黑(Carbon Black,CB)、石墨烯溶液,利用高比表面積的特性充分吸附碳材,並透過碳材本身的立體結構與尺寸大小之差異特性,由微米/奈米分散及聚集現象可以模仿荷葉表面的結構,以提高薄膜表面的粗糙度及疏水性質,使其達到超疏水的性質,並同時透過碳材本身的導電性可以增加其導電的性能。
    第二部份同樣以靜電紡絲的方式來製成奈米纖維薄膜,將利用分散劑分散好的碳黑、石墨烯溶液混入較低濃度的PU中,直接進行單軸的靜電紡絲,形成導電高分子纖維薄膜,加以與表面塗佈形成的導電薄膜做比較,探討其加工方式不同對薄膜所形成的導電度、疏水特性及其機械及熱性質做比較。
    從實驗結果顯示,此薄膜的疏水角度可達150度以上,同時表面電阻小於1000歐姆;此薄膜不僅擁有PU本身的彈性及輕薄特性,同時改變了其絕緣的性質,使之能夠成功的製備出人體感測的電極層材料可應用於智慧衣上,並有效的使用在心電圖(Electrocardiogram, ECG)來量測人體訊號。


    The main purpose of this study is to prepare for making polyurethane (PU) nanofiber film by electrospinning method. The fiber membrane with high specific surface area can be obtained in the process. PU is an insulating polymer material and therefore we use different dimensions of carbon materials to modify surface and blend them into fiber. The formation of conductive polymer fiber film is used in the sensor components to measure body signals.
    This study is divided into two parts. The first part is the preparation of polyurethane nanofiber thin film by electrospinning method. The surface is coated solution using star oil-soluble polymer dispersant dispersed carbon black (Carbon Black, CB), Graphene in toluene. We put the fiber film into dispersed CB/PML solution, and then the micron / nano dispersion and aggregation phenomenon can mimic the structure of the lotus leaf surface to improve the roughness and hydrophobicity of the film surface. In addition, it can increase electrical conductivity through the carbon materials.
    In the second part, the carbon nanofiber film is prepared by electrospinning. The carbon black solution dispersed with the dispersant is mixed into the low concentration of PU, and directly form the conductive Polymer film. It thereby is compared with the conductive film formed by surface coating in terms of conductivity, hydrophobicity and its mechanical and thermal properties.
    The experimental results show that the hydrophobic angle of the film can reach more than 150 degrees, while the surface resistance is less than 1,000 ohms. This film not only has flexibility of the PU and is also very light. Therefore, it can be successfully used in human sensing electrode materials owing to the change to its feature of insulation. Furthermore, it can be applied to the smart clothes using electrocardiogram to measure body signals.

    致謝 I 摘要 II Abstract IV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 碳材介紹 3 2.1.1 石墨烯介紹 3 2.1.2 碳黑介紹 6 2.1.3 碳黑結構及特性 7 2.1.4 碳黑製造方法 9 2.1.5 成網門檻(percolation threshold) 10 2.2 聚氨酯介紹 11 2.2.1 聚氨酯簡史 11 2.2.2 聚氨酯化學反應 11 2.2.3 聚氨酯合成方法 12 2.2.4 聚氨酯特性及應用 13 2.3 靜電紡絲 15 2.3.1 歷史回顧 15 2.3.2 靜電紡絲裝置 18 2.3.3 靜電紡絲技術 18 2.3.4 靜電紡絲製程與參數 20 2.3.5 靜電紡絲優點及應用 24 2.4 液體濕潤表面特性 25 2.4.1 楊氏方程式 26 2.4.2 基礎原理介紹 27 2.4.3 表面接觸角量測 31 2.5 智慧衣介紹 32 2.5.1 歷史及發展 32 2.5.2 智慧衣用途 33 2.5.3 人體心電圖 35 2.6 文獻回顧 36 2.6.1 以靜電紡絲法製備聚氨酯奈米纖維 36 2.6.2 含碳材之奈米纖維文獻 38 第三章 實驗方法與材料 43 3.1 實驗流程圖 43 3.2 實驗藥品與儀器 44 3.2.1 藥品/耗材名稱 44 3.2.2 實驗設備 45 3.3 合成分散劑 45 3.3.1 星形油溶性高分子分散劑 45 3.3.2 PIB-Imide-PIB 48 3.4 碳材分散 51 3.5 聚氨酯薄膜製備 52 3.5.1 電紡溶液配置 52 3.5.2 靜電紡絲製備奈米纖維 52 3.6 製備導電薄膜 52 3.6.1 表面塗佈 52 3.6.2 聚氨酯混和碳材進行電紡 53 3.7 分析儀器 53 第四章 以表面塗佈製備導電薄膜 59 4.1 聚氨酯電紡溶液調配 59 4.1.1 以OM觀察溶劑對電紡纖維結構影響 59 4.1.2 以OM觀察不同濃度比例下電紡纖維結構 62 4.2 CB/PML添加分散劑後分散情形 63 4.2.1 CB/PML不同比例下對電性及疏水角影響 66 4.2.2 添加不同比例分散劑對電性及疏水角影響 70 4.3 以SEM觀察吸附碳材後薄膜 73 4.4 塗佈碳材後薄膜機械性質探討 76 4.5 人體訊號量測效果 78 第五章 以混紡方式直接製備導電薄膜 81 5.1 分散劑選擇 81 5.1.1 碳黑分散情形 82 5.2 以光學顯微鏡觀察靜電紡絲薄膜 83 5.3 不同碳材含量對電阻值影響 84 5.4 薄膜厚度不同對電阻值的影響 85 5.5 以SEM觀察靜電紡絲薄膜 86 5.6 以TEM觀察靜電紡絲薄膜 88 5.7 薄膜之機械性質及熱性質探討 90 5.8 人體訊號量測效果 91 第六章 結論 93 第七章 未來展望 95 第八章 參考文獻 96

    [1] J. C. Huang, "Carbon black filled conducting polymers and polymer blends," Advances in Polymer Technology, vol. 21, no. 4, pp. 299-313, 2002.
    [2] D. Chung, "Electrical applications of carbon materials," Journal of Materials Science, vol. 39, no. 8, pp. 2645-2661, 2004.
    [3] S. G. Chen, J. W. Hu, M. Q. Zhang, M. Z. Rong, and Q. Zheng, "Improvement of gas sensing performance of carbon black/waterborne polyurethane composites: effect of crosslinking treatment," Sensors and Actuators B: Chemical, vol. 113, no. 1, pp. 361-369, 2006.
    [4] R. Richner, S. Müller, and A. Wokaun, "Grafted and crosslinked carbon black as an electrode material for double layer capacitors," Carbon, vol. 40, no. 3, pp. 307-314, 2002.
    [5] D. Bigg and D. Stutz, "Plastic composites for electromagnetic interference shielding applications," Polymer Composites, vol. 4, no. 1, pp. 40-46, 1983.
    [6] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites," Composites science and technology, vol. 63, no. 15, pp. 2223-2253, 2003.
    [7] Y. Xia et al., "One‐dimensional nanostructures: synthesis, characterization, and applications," Advanced materials, vol. 15, no. 5, pp. 353-389, 2003.
    [8] C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, "Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering," Biomaterials, vol. 25, no. 5, pp. 877-886, 2004.
    [9] P. P. Tsai, H. Schreuder-Gibson, and P. Gibson, "Different electrostatic methods for making electret filters," Journal of Electrostatics, vol. 54, no. 3, pp. 333-341, 2002.
    [10] M. Ma, Y. Mao, M. Gupta, K. K. Gleason, and G. C. Rutledge, "Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition," Macromolecules, vol. 38, no. 23, pp. 9742-9748, 2005.
    [11] R. Kessick and G. Tepper, "Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds," Sensors and Actuators B: Chemical, vol. 117, no. 1, pp. 205-210, 2006.
    [12] J. H. Hong, E. H. Jeong, H. S. Lee, D. H. Baik, S. W. Seo, and J. H. Youk, "Electrospinning of polyurethane/organically modified montmorillonite nanocomposites," Journal of Polymer Science Part B: Polymer Physics, vol. 43, no. 22, pp. 3171-3177, 2005.
    [13] S. Theron, E. Zussman, and A. Yarin, "Experimental investigation of the governing parameters in the electrospinning of polymer solutions," Polymer, vol. 45, no. 6, pp. 2017-2030, 2004.
    [14] N. L. Silva, L. Goncalves, and H. Carvalho, "Deposition of conductive materials on textile and polymeric flexible substrates," Journal of Materials Science: Materials in Electronics, vol. 24, no. 2, pp. 635-643, 2013.
    [15] G. Cho, K. Jeong, M. J. Paik, Y. Kwun, and M. Sung, "Performance evaluation of textile-based electrodes and motion sensors for smart clothing," IEEE Sensors Journal, vol. 11, no. 12, pp. 3183-3193, 2011.
    [16] G. Paul, R. Torah, S. Beeby, and J. Tudor, "Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing," Sensors and Actuators A: Physical, vol. 221, pp. 60-66, 2015.
    [17] G. Paul, R. Torah, S. Beeby, and J. Tudor, "The development of screen printed conductive networks on textiles for biopotential monitoring applications," Sensors and Actuators A: Physical, vol. 206, pp. 35-41, 2014.
    [18] M. Stoppa and A. Chiolerio, "Wearable electronics and smart textiles: a critical review," Sensors, vol. 14, no. 7, pp. 11957-11992, 2014.
    [19] V. Marozas, A. Petrenas, S. Daukantas, and A. Lukosevicius, "A comparison of conductive textile-based and silver/silver chloride gel electrodes in exercise electrocardiogram recordings," Journal of Electrocardiology, vol. 44, no. 2, pp. 189-194, 2011.
    [20] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," (in English), Science, Article vol. 306, no. 5696, pp. 666-669, Oct 2004.
    [21] A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, "Electrochemistry of graphene and related materials," Chemical reviews, vol. 114, no. 14, pp. 7150-7188, 2014.
    [22] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, no. 6, pp. 1339-1339, 1958.
    [23] X. Gao, J. Jang, and S. Nagase, "Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design," The Journal of Physical Chemistry C, vol. 114, no. 2, pp. 832-842, 2009.
    [24] J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. X. Huang, "Graphene Oxide Sheets at Interfaces," (in English), Journal of the American Chemical Society, Article vol. 132, no. 23, pp. 8180-8186, Jun 2010.
    [25] 謝立生, "碳黑物性與應用入門," 高分子期刊, pp. P.51-P.58.
    [26] A. Medalia and F. Heckman, "Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy," Carbon, vol. 7, no. 5, pp. 567IN3569IN7577-568576582, 1969.
    [27] J.-B. Donnet, "Fifty years of research and progress on carbon black," Carbon, vol. 32, no. 7, pp. 1305-1310, 1994.
    [28] J. Accorsi and E. Romero, "Additives: special carbon blacks for plastics," Plastics engineering, vol. 51, no. 4, pp. 29-32, 1995.
    [29] J.-B. Donnet, Carbon black: science and technology. CRC Press, 1993.
    [30] M. Q. Zhang, G. Yu, H. M. Zeng, H. B. Zhang, and Y. H. Hen, "Two-step percolation in polymer blends filled with carbon black," (in English), Macromolecules, Article vol. 31, no. 19, pp. 6724-6726, Sep 1998.
    [31] O. Bayer and D. Dieterich, "Polyurethane plastics," ed: Google Patents, 1969.
    [32] G. Kolb, H. Gruber, O. Bayer, and R. Mayer, "Polyurethanes from polyisocyanates and copolymers of hydroxyalkyl acrylates, alkyl acylates, and vinyl benzenes," ed: Google Patents, 1966.
    [33] O. Bayer, "Das Di‐Isocyanat‐Polyadditionsverfahren (Polyurethane)," Angewandte Chemie, vol. 59, no. 9, pp. 257-272, 1947.
    [34] M. Bailey, V. Kirss, and R. Spaunburgh, "Reactivity of organic isocyanates," Industrial & Engineering Chemistry, vol. 48, no. 4, pp. 794-797, 1956.
    [35] D. K. Chattopadhyay and K. Raju, "Structural engineering of polyurethane coatings for high performance applications," Progress in polymer science, vol. 32, no. 3, pp. 352-418, 2007.
    [36] 羅蕙蕙, "我國PU樹酯應用市場與技術發展, 化學工業研究所應用化學組," 2003.
    [37] L. Rayleigh, "XX. On the equilibrium of liquid conducting masses charged with electricity," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, no. 87, pp. 184-186, 1882.
    [38] J. Zeleny, "The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces," Physical Review, vol. 3, no. 2, p. 69, 1914.
    [39] A. Formhals, "US Patent 1975504," US Pat, vol. 1975504, 1934.
    [40] A. Formhals, "Production of artificial fibers," ed: Google Patents, 1937.
    [41] A. Formhals, "Method and apparatus for spinning," US patent, vol. 2, no. 160, p. 962, 1939.
    [42] G. Taylor, "Disintegration of water drops in an electric field," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1964, vol. 280, no. 1382, pp. 383-397: The Royal Society.
    [43] G. Taylor, "The force exerted by an electric field on a long cylindrical conductor," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1966, vol. 291, no. 1425, pp. 145-158: The Royal Society.
    [44] G. Taylor, "Electrically driven jets," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1969, vol. 313, no. 1515, pp. 453-475: The Royal Society.
    [45] J. Melcher and G. Taylor, "Electrohydrodynamics: a review of the role of interfacial shear stresses," Annual review of fluid mechanics, vol. 1, no. 1, pp. 111-146, 1969.
    [46] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Journal of colloid and interface science, vol. 36, no. 1, pp. 71-79, 1971.
    [47] L. Larrondo and R. St John Manley, "Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties," Journal of Polymer Science: Polymer Physics Edition, vol. 19, no. 6, pp. 909-920, 1981.
    [48] D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, no. 3, p. 216, 1996.
    [49] M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, "Electrospinning and electrically forced jets. I. Stability theory," Physics of fluids, vol. 13, no. 8, pp. 2201-2220, 2001.
    [50] S. Reznik, A. Yarin, A. Theron, and E. Zussman, "Transient and steady shapes of droplets attached to a surface in a strong electric field," Journal of Fluid Mechanics, vol. 516, pp. 349-377, 2004.
    [51] D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning," Journal of Applied physics, vol. 87, no. 9, pp. 4531-4547, 2000.
    [52] 吳衛星, "熔融静電纺絲製備 PE/PP 纖维的研究," 天津大學, 2005.
    [53] Y. Shin, M. Hohman, M. Brenner, and G. Rutledge, "Experimental characterization of electrospinning: the electrically forced jet and instabilities," Polymer, vol. 42, no. 25, pp. 09955-09967, 2001.
    [54] M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, "Electrospinning of polyurethane fibers," Polymer, vol. 43, no. 11, pp. 3303-3309, 2002.
    [55] S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, "Micro-and nanostructured surface morphology on electrospun polymer fibers," Macromolecules, vol. 35, no. 22, pp. 8456-8466, 2002.
    [56] C. Thompson, G. G. Chase, A. Yarin, and D. Reneker, "Effects of parameters on nanofiber diameter determined from electrospinning model," Polymer, vol. 48, no. 23, pp. 6913-6922, 2007.
    [57] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, "Processing and microstructural characterization of porous biocompatible protein polymer thin films," Polymer, vol. 40, no. 26, pp. 7397-7407, 1999.
    [58] D. Li and Y. Xia, "Fabrication of titania nanofibers by electrospinning," Nano Letters, vol. 3, no. 4, pp. 555-560, 2003.
    [59] L. Wannatong, A. Sirivat, and P. Supaphol, "Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene," Polymer International, vol. 53, no. 11, pp. 1851-1859, 2004.
    [60] B. Kim, H. Park, S.-H. Lee, and W. M. Sigmund, "Poly (acrylic acid) nanofibers by electrospinning," Materials letters, vol. 59, no. 7, pp. 829-832, 2005.
    [61] N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnology advances, vol. 28, no. 3, pp. 325-347, 2010.
    [62] P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, "Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent," Polymer, vol. 46, no. 13, pp. 4799-4810, 2005.
    [63] W. Zuo, M. Zhu, W. Yang, H. Yu, Y. Chen, and Y. Zhang, "Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning," Polymer Engineering & Science, vol. 45, no. 5, pp. 704-709, 2005.
    [64] Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, "Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 72, no. 1, pp. 156-165, 2005.
    [65] H. Jiang, D. Fang, B. S. Hsiao, B. Chu, and W. Chen, "Optimization and characterization of dextran membranes prepared by electrospinning," Biomacromolecules, vol. 5, no. 2, pp. 326-333, 2004.
    [66] X. Lu, Y. Zhao, and C. Wang, "Fabrication of PbS Nanoparticles in Polymer‐Fiber Matrices by Electrospinning," Advanced Materials, vol. 17, no. 20, pp. 2485-2488, 2005.
    [67] H. Fong, I. Chun, and D. Reneker, "Beaded nanofibers formed during electrospinning," Polymer, vol. 40, no. 16, pp. 4585-4592, 1999.
    [68] C. Burger, B. S. Hsiao, and B. Chu, "Nanofibrous materials and their applications," Annu. Rev. Mater. Res., vol. 36, pp. 333-368, 2006.
    [69] T. Young, "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805.
    [70] J.-N. Wang, Y.-L. Zhang, Y. Liu, W. Zheng, L. P. Lee, and H.-B. Sun, "Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications," Nanoscale, vol. 7, no. 16, pp. 7101-7114, 2015.
    [71] W. Barthlott and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, vol. 202, no. 1, pp. 1-8, 1997.
    [72] N. A. Patankar, "Mimicking the lotus effect: influence of double roughness structures and slender pillars," Langmuir, vol. 20, no. 19, pp. 8209-8213, 2004.
    [73] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial & Engineering Chemistry, vol. 28, no. 8, pp. 988-994, 1936.
    [74] A. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday society, vol. 40, pp. 546-551, 1944.
    [75] J. T. Korhonen, T. Huhtamäki, O. Ikkala, and R. H. Ras, "Reliable measurement of the receding contact angle," Langmuir, vol. 29, no. 12, pp. 3858-3863, 2013.
    [76] S. Park and S. Jayaraman, "Smart textiles: Wearable electronic systems," MRS bulletin, vol. 28, no. 08, pp. 585-591, 2003.
    [77] S. Park and S. Jayaraman, "Enhancing the quality of life through wearable technology," IEEE Engineering in medicine and biology magazine, vol. 22, no. 3, pp. 41-48, 2003.
    [78] A. D. Waller, "A demonstration on man of electromotive changes accompanying the heart's beat," The Journal of physiology, vol. 8, no. 5, p. 229, 1887.
    [79] M. K. Yapici, A. A. Tamador, Y. A. Samad, and K. Liao, "Graphene-clad textile electrodes for electrocardiogram monitoring," Sensors and Actuators B-Chemical, vol. 221, pp. 1469-1474, Dec 2015.
    [80] K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, "Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends," (in English), Journal of Polymer Science Part B-Polymer Physics, Article vol. 41, no. 11, pp. 1256-1262, Jun 2003.
    [81] H. Zhuo, J. Hu, S. Chen, and L. Yeung, "Preparation of polyurethane nanofibers by electrospinning," Journal of Applied Polymer Science, vol. 109, no. 1, pp. 406-411, 2008.
    [82] R. Chen, L. Qiu, Q. Ke, C. He, and X. Mo, "Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications," Journal of Biomaterials Science, Polymer Edition, vol. 20, no. 11, pp. 1513-1536, 2009.
    [83] J. H. Yang et al., "Electrospinning fabrication and characterization of poly (vinyl alcohol)/waterborne polyurethane nanofiber membranes in aqueous solution," Journal of applied polymer science, vol. 120, no. 4, pp. 2337-2345, 2011.
    [84] H. R. Pant et al., "One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification," Journal of hazardous materials, vol. 264, pp. 25-33, 2014.
    [85] J. Hwang, J. Muth, and T. Ghosh, "Electrical and mechanical properties of carbon-black-filled, electrospun nanocomposite fiber webs," (in English), Journal of Applied Polymer Science, Article vol. 104, no. 4, pp. 2410-2417, May 2007.
    [86] M. T. Hunley, P. Pötschke, and T. E. Long, "Melt Dispersion and Electrospinning of Non‐Functionalized Multiwalled Carbon Nanotubes in Thermoplastic Polyurethane," Macromolecular rapid communications, vol. 30, no. 24, pp. 2102-2106, 2009.
    [87] Y. L. Huang et al., "Self-assembly of silver-graphene hybrid on electrospun polyurethane nanofibers as flexible transparent conductive thin films," Carbon, vol. 50, no. 10, pp. 3473-3481, Aug 2012.
    [88] J. F. Gao, M. J. Hu, Y. C. Dong, and R. K. Y. Li, "Graphite-Nanoplatelet-Decorated Polymer Nanofiber with Improved Thermal, Electrical, and Mechanical Properties," Acs Applied Materials & Interfaces, vol. 5, no. 16, pp. 7758-7764, Aug 2013.
    [89] S. T. Hsiao et al., "Preparation and characterization of silver nanoparticle-reduced graphene oxide decorated electrospun polyurethane fiber composites with an improved electrical property," Composites Science and Technology, vol. 118, pp. 171-177, Oct 2015.

    無法下載圖示 全文公開日期 2022/07/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE