簡易檢索 / 詳目顯示

研究生: 馬哈茂德
Mahmoud - Mohamed Mahmoud Ahmed
論文名稱: Supercapacitor Performance of Expanded Magnetic Graphene Composites
Supercapacitor Performance of Expanded Magnetic Graphene Composites
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 鄧熙聖
Hsisheng Teng
孫嘉良
Chia-Liang Sun
江志強
Jyh-Chiang Jiang
氏原真樹
Masaki Ujihara
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 127
中文關鍵詞: MagneticfieldSupercapacitorGrapheneSurfacearea
外文關鍵詞: Magnetic field, Supercapacitor, Graphene, Surface area
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁性石墨烯複合材料(Magnetic grapheme composite, MGC)是由氧化鐵-石墨插層化合物(Graphite intercalation compounds, GIC)經空氣中加熱 400℃/75分鐘及 900℃再加熱 2 分鐘衍生而來。該材料經熱處理後,石墨烯與石墨間的距離增大進而使該材料表面積達到 17.2 m2/g。因此,磁性石墨烯複合材料的比電容值與未經熱處理前增加高達 840%。此外,該材料(MGC-900)與苯胺進行原位聚合得到比電容值為 253 F/g 在 5mV/s 掃描速度下。由此可知,經熱處理及與導電高分子雜交可產生一有效膨脹 MGC 並具增強電化學活性和相對高的能量密度。

    另外,MGC 在真空加熱至 2000℃(MGC-900-2000),可得到更薄的剝落層,其具單層或數層的石墨烯其表面積為 53 m2/g. 剝落複合物(MGC-900-2000)更能提高電化學性能,其電容表現是加熱前的 18 倍。

    此外,MGC 在各種不同磁場梯度作用下進行電化學性能研究,我們發現有效磁場為 105W,其電容表現比原來高出 40 倍。而在相同掃描速度下,我們發現 MGC-900-PANI 在磁場下其電容高達 521 F/g。由這些結果顯出石墨剝落並施加一磁場之協同效應可大大提升電化學性能。

    最後在這三種不同實驗顯示利用不同方法得低缺陷的石墨剝落,其使促進合成方法及電化學性能。此外,在磁場下之電化學性能表現能開創能源科學和其技術應用。


    Magnetic graphene (MGC) composite derived from stage-1 FeCl3–graphite intercalation compounds (GIC) was thermally treated up to 75 min at 400 °C and for 2 min at 900 °C in air. The heat treatments of the composite induced the cubical expansion of graphene with the enlargement of inter-graphene distances. Heating played a considerable role in the increase in surface area that reached 17.2 m2 g−1 during the nondefective inter-graphene exfoliation. Accordingly, the specific capacitance of MGC composite increased up to 840% of its initial value upon heating of pristine MGC composite in comparison with its value before heat treatment. Moreover, MGC heated at 900 °C (MGC-900) was hybridized with polyaniline through in situ polymerization of aniline to achieve a specific capacitance of 253 F g−1 at 5 mV s−1. Heat treatment and hybridization with a conductive polymer can effectively produce an efficient-expanded MGC composite with enhanced electrochemical activity and relatively high energy density.

    Separately, MGC-900 was heated at 2000 °C in vacuum atmosphere, yielding a massive expansion with well-separated layers. This exfoliation produced very thin layers including single and few-layer graphene with a surface area of 53 m2g-1. The exfoliated composite (MGC-900-2000) showed boosted electrochemical performance, with capacitive performance increasing 18 times the original value prior to heating.

    Additionally, the electrochemical performance of MGC under the effect of magnetic field was investigated. Various magnetic field gradients were thoroughly examined, and the effective DC power was 105 W. Capacitive performance was 40 times higher than the original value. Furthermore, when MGC-900-PANI was investigated, the capacitive routine reached 521 Fg-1 at the same scan rate. These results clearly showed the synergistic effect of the applied magnetic field on graphene exfoliation by improving its electrochemical performance.

    These three different experiments showed various methods of defect-less graphene exfoliation to promote its synthesis procedure as well as electrochemical performance. Moreover, the electrochemical performance under magnetic field could inaugurate a plethora of the magnetic field in energy science and technology applications.

    Table of Contents Abstract.........................................................................................................................1 Acknowledgements......................................................................................................3 Table of Contents.........................................................................................................6 List of Figures.............................................................................................................10 List of Tables..............................................................................................................14 Chapter I: General Introduction..............................................................................15 1.1– Historical background of "static electricity"...............................................15 1.2– Basics of electric double layer.......................................................................16 1.3– Electric Double-Layer at Interface of Electrode and in Electrolyte Solution............................................................................................................17 1.4– Materials for Supercapacitors.......................................................................19 1.4.1– Materials for Electric Double Layer Capacitors........................19 1.4.2– Materials for pseudo-capacitors...................................................23 1.4.3– Materials for hybrid supercapacitors...........................................24 1.5– Electrode Requirements for Electrochemical Supercapacitors.................26 1.6– Energy and Power Densities of Electrochemical Supercapacitors............27 1.6.1– Energy Densities..............................................................................27 1.6.2– Power density..................................................................................28 1.7– Ragone Plot: Relationship of Energy Density and Power Density.................29 1.8– Difference between EDLC supercapacitor and batteries...............................30 1.9–Applications of Supercapacitors........................................................................32 1.10–Scope of this thesis.............................................................................................33 Chapter II: Electrochemical properties of thermally expanded magnetic graphene composites and their hybrids with a conductive polymer.....................35 2.1– Introduction.....................................................................................................35 2.2– Experimental section.......................................................................................37 2.2.1– Reagents.............................................................................................37 2.2.2– Instruments.........................................................................................37 2.2.3– Heat-treatment of magnetic graphene.............................................38 2.2.4– Polymerization on a heat-treated expanded graphene composite..38 2.2.5–Electrochemical characterizations......................................................38 2.3–Results and discussions.......................................................................................39 2.3.1– Characterization of heat-treated expanded magnetic graphene composites......................................................................................39 2.3.2– Electrochemistry of heat-treated expanded magnetic graphene composites......................................................................................47 2.3.3– Effects of polyaniline hybridized on the expanded magnetic graphene composites......................................................................59 2.4- Conclusions........................................................................................................64 Chapter III: Effect of Ultra-high temperature for exfoliation of magnetic graphene 3.1 – Introduction.......................................................................................................66 3.2 – Experimental section.........................................................................................68 3.2-1– Reagents...............................................................................................68 3.2.2– Instruments..........................................................................................68 3.2.3–Heat-treatment of graphene................................................................69 3.2.4–Electrochemical characterizations......................................................70 3.3 – Results and discussions.....................................................................................70 3.3.1– Characterization of thermally exfoliated graphene.........................70 3.3.2–Electrochemical performance of exfoliated graphene......................78 3.4- Conclusions..........................................................................................................80 Chapter IV Chapter IV: Performance by external Magnetic field on Capacitance of Graphene-based composites 4.1 – Introduction.......................................................................................................82 4.2 – Experimental section.........................................................................................84 4.2.1- Reagents................................................................................................84 4.2.2- Preparation of expanded magnetic graphene compounds...............84 4.2.3-Polymerization of aniline on exfoliated magnetic graphene compound..................................................................................................85 4.2.4-CV measurements.................................................................................85 4.2.5- CV measurement under magnetic field.............................................86 4.3-Results and Discussions.......................................................................................87 4.3.1- Electrochemistry of magnetic graphene............................................87 4.4- Conclusions..........................................................................................................96 Chapter V: General Conclusions & Future aspects...............................................97 5.1– General Conclusions............................................................................97 5.2– Future aspects.......................................................................................99 References........................................................................................................100 Conference list..........................................................................................................119 Publication list..........................................................................................................123

    1. Becker, H. I., Low voltage electrolytic capacitor. Google Patents: 1957; Vol. US 2800616 A.

    2. Doughty, D. H.; Butler, P. C.; Akhil, A. A.; Clark, N. H.; Boyes, J. D., Batteries for large-scale stationary electrical energy storage. The Electrochemical Society Interface 2010, 19 (3), 49-53.

    3. Xue, R.; Yan, J.; Liu, X.; Tian, Y.; Yi, B., Effect of activation on the carbon fibers from phenol–formaldehyde resins for electrochemical supercapacitors. Journal of Applied Electrochemistry 2011, 41 (11), 1357-1366.

    4. Yu, A.; Chabot, V.; Zhang, J., Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. CRC Press: 2013.

    5. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature materials 2008, 7 (11), 845-854.

    6. Xu, J.; Tan, Z.; Zeng, W.; Chen, G.; Wu, S.; Zhao, Y.; Ni, K.; Tao, Z.; Ikram, M.; Ji, H., A Hierarchical Carbon Derived from Sponge‐Templated Activation of Graphene Oxide for High‐Performance Supercapacitor Electrodes. Advanced Materials 2016.

    7. Adekunle, A. S.; Ozoemena, K. I.; Ebenso, E. E. In Electrosynthesised Metal (Ni, Fe, Co) Oxide Films on Single-Walled Carbon Nanotube Platforms and Their Supercapacitance in Acidic and Neutral pH Media, Meeting Abstracts, The Electrochemical Society: 2016; pp 571-571.

    8. Taberna, P.-L. In Mechanically Stable Carbide Derived Carbon Nanoporous Films for Micro-Supercapacitors, PRIME 2016/230th ECS Meeting (October 2-7, 2016), ECS: 2016.

    9. Zeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V., Review: carbon onions for electrochemical energy storage. Journal of Materials Chemistry A 2016, 4 (9), 3172-3196.

    10. Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P.-L.; Simon, P., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature nanotechnology 2010, 5 (9), 651-654.

    11. Miao, F.; Shao, C.; Li, X.; Wang, K.; Liu, Y., Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. Journal of Materials Chemistry A 2016, 4 (11), 4180-4187.

    12. Wang, T.; Zhu, Y.; Xing, Z.; Tang, G.; Fan, H., The Specific Capacitive Performances of the Manganese Oxyhydroxide/Carbon microcoil Electrodes for Supercapacitors. Electrochimica Acta 2015, 151, 134-139.

    13. Adhikari, P. D.; Ujihara, M.; Imae, T.; Hong, P.-D.; Motojima, S., Reinforcement on Properties of Poly (vinyl alcohol) Films by Embedding Functionalized Carbon Micro Coils. Journal of nanoscience and nanotechnology 2011, 11 (2), 1004-1012.

    14. Ujihara, M.; Imae, T. In A Review of Hydrophilization of Oxidized Nanocarbons, ACS Symposium Series, ACS Publications: 2015; pp 245-268.

    15. El-Kady, M., Graphene Supercapacitors: Charging Up the Future. 2013.

    16. Simon, P.; Gogotsi, Y., Capacitive energy storage in nanostructured carbon– electrolyte systems. Accounts of chemical research 2012, 46 (5), 1094-1103.

    17. Kumar, V. B.; Borenstein, A.; Markovsky, B.; Aurbach, D.; Gedanken, A.; Talianker, M.; Porat, Z., Activated Carbon Modified with Carbon Nanodots as Novel Electrode Material for Supercapacitors. The Journal of Physical Chemistry C 2016.

    18. Zhang, L. L.; Zhao, X., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531.

    19. Wang, G.; Zhang, L.; Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2012, 41 (2), 797- 828.

    20. Sullivan, M.; Schnyder, B.; Bärtsch, M.; Alliata, D.; Barbero, C.; Imhof, R.; Kötz, R., Electrochemically modified glassy carbon for capacitor electrodes characterization of thick anodic layers by cyclic voltammetry, differential electrochemical mass spectrometry, spectroscopic ellipsometry, X‐ray photoelectron spectroscopy, FTIR, and AFM. Journal of The Electrochemical Society 2000, 147 (7), 2636-2643.

    21. Beidaghi, M.; Chen, W.; Wang, C., Electrochemically activated carbon micro- electrode arrays for electrochemical micro-capacitors. Journal of Power Sources 2011, 196 (4), 2403-2409.

    22. Xu, H.; Fan, X.; Lu, Y.; Zhong, L.; Kong, X.; Wang, J., Preparation of an electrochemically modified graphite electrode and its electrochemical performance for pseudo-capacitors in a sulfuric acid electrolyte. Carbon 2010, 48 (11), 3300-3303.

    23. Jänes, A.; Kurig, H.; Lust, E., Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon 2007, 45 (6), 1226-1233.
    24. Portet, C.; Yushin, G.; Gogotsi, Y., Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 2007, 45 (13), 2511-2518.

    25. Sun, G.; Ma, L.; Ran, J.; Shen, X.; Tong, H., Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performance asymmetric supercapacitors. Journal of Materials Chemistry A 2016, DOI:10.1039/C6TA03884K.

    26. Simon, P.; Burke, A., Nanostructured carbons: double-layer capacitance and more. The electrochemical society interface 2008, 17 (1), 38.

    27. Liu, C.; Wang, J.; Li, J.; Zeng, M.; Luo, R.; Shen, J.; Sun, X.; Han, W.; Wang, L., Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2016, 8 (11), 7194-7204.

    28. Kim, S.-K.; Jung, E.; Goodman, M. D.; Schweizer, K. S.; Tatsuda, N.; Yano, K.; Braun, P.V., Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes. ACS applied materials & interfaces 2015, 7 (17), 9128-9133.

    29. Chen, J.; Xu, J.; Zhou, S.; Zhao, N.; Wong, C.-P., Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 2016, 25, 193- 202.

    30. El-kady, M. F.; Kaner, R. B.; Hwang, J. Y., POROUS INTERCONNECTED CORRUGATED CARBON-BASED NETWORK (ICCN) COMPOSITE. US Patent 20,160,148,759: 2016.

    31. Wang, K.; Cao, Y.; Wang, X.; Castro, M. A.; Luo, B.; Gu, Z.; Liu, J.; Hoefelmeyer, J. D.; Fan, Q., Rod-shape porous carbon derived from aniline modified lignin for symmetric supercapacitors. Journal of Power Sources 2016, 307, 462-467.

    32. Zhang, C.; Zhu, X.; Cao, M.; Li, M.; Li, N.; Lai, L.; Zhu, J.; Wei, D., Hierarchical Porous Carbon Materials Derived from Sheep Manure for High- Capacity Supercapacitors. ChemSusChem 2016, 9 (9), 932-937.

    33. Hasegawa, G.; Kanamori, K.; Kiyomura, T.; Kurata, H.; Abe, T.; Nakanishi, K., Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for High-Voltage Aqueous Supercapacitors. Chemistry of Materials 2016.

    34. Tan, Y.; Gao, Q.; Xu, J.; Li, Z., 1D nanorod-like porous carbon with simultaneous high energy and large power density as a supercapacitor electrode material. RSC Advances 2016, 6 (56), 51332-51336.
    35. Huang, J.; Wang, J.; Wang, C.; Zhang, H.; Lu, C.; Wang, J., Hierarchical Porous Graphene Carbon-Based Supercapacitors. Chemistry of Materials 2015, 27 (6), 2107- 2113.

    36. Devarapalli, R. R.; Szunerits, S.; Coffinier, Y.; Shelke, M. V.; Boukherroub, R., Glucose- Derived Porous Carbon-Coated Silicon Nanowires as Efficient Electrodes for Aqueous Micro-Supercapacitors. ACS applied materials & interfaces 2016, 8 (7), 4298-4302.

    37. Garcia, B. B.; Candelaria, S. L.; Cao, G., Nitrogenated porous carbon electrodes for supercapacitors. J Mater Sci 2012, 47 (16), 5996-6004.

    38. Jiang, Y.; Yan, J.; Wu, X.; Shan, D.; Zhou, Q.; Jiang, L.; Yang, D.; Fan, Z., Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. Journal of Power Sources 2016, 307, 190- 198.

    39. Zu, G.; Shen, J.; Zou, L.; Wang, F.; Wang, X.; Zhang, Y.; Yao, X., Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 2016, 99, 203-211.

    40. Liu, J.; Wang, X.; Gao, J.; Zhang, Y.; Lu, Q.; Liu, M., Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors. ElectrochimicaActa 2016, doi:10.1016/j.electacta.2016.05.217.

    41. Yun, Y. S.; Park, M. H.; Hong, S. J.; Lee, M. E.; Park, Y. W.; Jin, H.-J., Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors. ACS Applied Materials & Interfaces 2015, 7 (6), 3684-3690.

    42. Li, H.; Yuan, D.; Tang, C.; Wang, S.; Sun, J.; Li, Z.; Tang, T.; Wang, F.; Gong, H.; He, C., Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 2016, 100, 151-157.

    43. Chee, W. K.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Harrison, I.; Andou, Y., Flexible Graphene-Based Supercapacitors: A Review. The Journal of Physical Chemistry C 2016, 120 (8), 4153-4172.

    44. Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351 (6274), 691-695.

    45. Chmiola, J.; Largeot, C.; Taberna, P.-L.; Simon, P.; Gogotsi, Y., Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010, 328 (5977), 480-483.

    46. Qiu, Y.; Li, G.; Hou, Y.; Pan, Z.; Li, H.; Li, W.; Liu, M.; Ye, F.; Yang, X.; Zhang, Y., Vertically aligned carbon nanotubes on carbon nanofibers: A hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chemistry of Materials 2015, 27 (4), 1194-1200.

    47. Presser, V.; Heon, M.; Gogotsi, Y., Carbide‐Derived Carbons–From Porous Networks to Nanotubes and Graphene. Advanced Functional Materials 2011, 21 (5), 810-833.

    48. Zhu, Y.; Hu, H.; Li, W.-C.; Zhang, X., Cresol–formaldehyde based carbon aerogel as electrode material for electrochemical capacitor. Journal of power sources 2006, 162 (1), 738-742.

    49. Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P. F.; Mayes, R. T.; Dai, S., Carbon materials for chemical capacitive energy storage. Advanced materials 2011, 23 (42), 4828-4850.

    50. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B., Laser Scribing of High- Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335 (6074), 1326-1330.

    51. Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; El-Kady, M. F.; Wang, L. J.; Kaner, R. B.; Calle, C. I. In Graphene-based ultracapacitors for aeronautics applications, 247th ACS National Meeting and Exposition, ACS: 2014.

    52. El-Kady, M. F.; Kaner, R. B., Scalable fabrication of high-power graphene micro- supercapacitors for flexible and on-chip energy storage. Nature communications 2013, 4, 1475.

    53. El-Kady, M. F.; Kaner, R. B., Direct laser writing of graphene electronics. ACS nano 2014, 8 (9), 8725-8729.

    54. El-Kady, M.; Strong, V.; Dubin, S.; Kaner, R. In Laser Printing of Flexible Graphene-Based Supercapacitors with Ultrahigh Power and Energy Densities, 243th ACS meeting, San Diego, California, American Chemical Society: 2012.

    55. Strong, V.; Dubin, S.; El-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B., Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS nano 2012, 6 (2), 1395-1403.

    56. Lei, Z.; Christov, N.; Zhao, X., Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy & Environmental Science 2011, 4 (5), 1866-1873.

    57. Wei, B.; Wang, L.; Miao, Q.; Yuan, Y.; Dong, P.; Vajtai, R.; Fei, W., Fabrication of manganese oxide/three-dimensional reduced graphene oxide composites as the supercapacitors by a reverse microemulsion method. Carbon 2015, 85, 249-260.

    58. Fan, Z.-J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L.-J.; Feng, J.; Ren, Y.-m.; Song, L.- P.; Wei, F., Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS Nano 2011, 5 (1), 191-198.

    59. Ujihara, M.; Ahmed, M. M. M.; Imae, T.; Yamauchi, Y., Massive-exfoliation of magnetic graphene from acceptor-type GIC by long-chain alkyl amine. Journal of Materials Chemistry A 2014, 2 (12), 4244-4250.

    60. Laforgue, A.; Simon, P.; Sarrazin, C.; Fauvarque, J.-F., Polythiophene-based supercapacitors. Journal of power sources 1999, 80 (1), 142-148.

    61. Wolfart, F.; Dubal, D. P.; Vidotti, M.; Gómez-Romero, P., Hybrid core–shell nanostructured electrodes made of polypyrrole nanotubes coated with Ni (OH) 2 nanoflakes for high energy-density supercapacitors. RSC Advances 2016, 6 (18), 15062-15070.

    62. Gawli, Y.; Banerjee, A.; Dhakras, D.; Deo, M.; Bulani, D.; Wadgaonkar, P.; Shelke, M.; Ogale, S., 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance. Scientific reports 2016, 6. DOI:10.1038/srep21002.

    63. Snook, G. A.; Kao, P.; Best, A. S., Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011, 196 (1), 1-12.

    64. Zhang, J.; Zhao, X. S., Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. The Journal of Physical Chemistry C 2012, 116 (9), 5420-5426.

    65. Lehtimäki, S.; Suominen, M.; Damlin, P.; Tuukkanen, S.; Kvarnström, C.; Lupo, D., Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites. ACS Applied Materials & Interfaces 2015, 7 (40), 22137-22147.

    66. Burke, A., Ultracapacitors: why, how, and where is the technology. Journal of power sources 2000, 91 (1), 37-50.

    67. Long, J. W.; Bélanger, D.; Brousse, T.; Sugimoto, W.; Sassin, M. B.; Crosnier, O., Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes. MRS Bulletin 2011, 36 (07), 513-522.

    68. Jana, M.; Kumar, J. S.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N. C.; Kuila, T., Superior performance of asymmetric supercapacitor based on reduced graphene oxide–manganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials. Journal of Power Sources 2016, 303, 222-233.

    69. Yuan, B.; Xu, C.; Deng, D.; Xing, Y.; Liu, L.; Pang, H.; Zhang, D., Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochimica acta 2013, 88, 708-712.

    70. Xu, Y.; Wang, L.; Cao, P.; Cai, C.; Fu, Y.; Ma, X., Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co- precipitation route as electrode material for supercapacitors. Journal of Power Sources 2016, 306, 742-752.

    71. Yu, Z.; Sun, S.; Huang, M., Electrodeposition of Gold Nanoparticles on Electrochemically Reduced Graphene Oxide for High Performance Supercapacitor Electrode Materials. International Journal of Electrrochemical Science 2016, 11 (5), 3643-3650.

    72. Qu, Q.; Yang, S.; Feng, X., 2D Sandwich‐like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors. Advanced materials 2011, 23 (46), 5574-5580.

    73. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G., Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical society reviews 2011, 40 (3), 1697-1721.

    74. Sassin, M. B.; Chervin, C. N.; Rolison, D. R.; Long, J. W., Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors. Accounts of chemical research 2012, 46 (5), 1062-1074.

    75. Zhao, X.; Sánchez, B. M.; Dobson, P. J.; Grant, P. S., The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011, 3 (3), 839-855.

    76. Wang, W.; Guo, S.; Lee, I.; Ahmed, K.; Zhong, J.; Favors, Z.; Zaera, F.; Ozkan, M.; Ozkan, C. S., Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Scientific Reports 2014, 4, 4452.

    77. Hwang, J. Y.; El-Kady, M. F.; Wang, Y.; Wang, L.; Shao, Y.; Marsh, K.; Ko, J. M.; Kaner, R. B., Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 2015, 18, 57-70.

    78. Lang, X.; Hirata, A.; Fujita, T.; Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology 2011, 6 (4), 232-236.

    79. Mohamed, S. G.; Chen, C.-J.; Chen, C. K.; Hu, S.-F.; Liu, R.-S., High- Performance Lithium-Ion Battery and Symmetric Supercapacitors Based on FeCo2O4 Nanoflakes Electrodes. ACS Applied Materials & Interfaces 2014, 6 (24), 22701-22708.

    80. Liu, H.; Zhang, J.; Xu, D.; Huang, L.; Tan, S.; Mai, W., Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. Journal of Solid State Electrochemistry 2015, 19 (1), 135- 144.

    81. Ahmed, M. M. M.; Imae, T., Electrochemical properties of a thermally expanded magnetic graphene composite with a conductive polymer. Physical Chemistry Chemical Physics 2016, 18 (15), 10400-10410.

    82. Aldama, I.; Barranco, V.; Centeno, T.; Ibañez, J.; Rojo, J., Composite Electrodes Made from Carbon Cloth as Supercapacitor Material and Manganese and Cobalt Oxide as Battery One. Journal of The Electrochemical Society 2016, 163 (5), A758-A765.

    83. Chu, J.; Kong, Z.; Lu, D.; Zhang, W.; Wang, X.; Yu, Y.; Li, S.; Wang, X.; Xiong, S.; Ma, J., Hydrothermal synthesis of vanadium oxide nanorods and their electrochromic performance. Materials Letters 2016, 166, 179-182.

    84. Montemor, M. F.; Eugénio, S.; Tuyen, N.; Silva, R.; Silva, T.; Carmezim, M., Nanostructured transition metal oxides produced by electrodeposition for application as redox electrodes for supercapacitors. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques 2016, 681-714.

    85. Zhu, B.; Tang, S.; Vongehr, S.; Xie, H.; Meng, X., Hierarchically MnO2– Nanosheet Covered Submicrometer-FeCo2O4-Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors. ACS applied materials & interfaces 2016, 8 (7), 4762-4770.

    86. Senthilkumar, S.; Fu, N.; Liu, Y.; Wang, Y.; Zhou, L.; Huang, H., Flexible fiber hybrid supercapacitor with NiCo 2 O 4 nanograss@ carbon fiber and bio- waste derived high surface area porous carbon. Electrochimica Acta 2016.

    87. Chen, S.; Ma, W.; Xiang, H.; Cheng, Y.; Yang, S.; Weng, W.; Zhu, M., Conductive, tough, hydrophilic poly (vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. Journal of Power Sources 2016, 319, 271-280.

    88. Sharma, A. K.; Bhardwaj, P.; Dhawan, S. K.; Sharma, Y., Oxidative synthesis and electrochemical studies of poly (aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. 2015. DOI: 10.5185/amlett.2015.5690.

    89. Wang, R.; Wu, Q.; ZHANG, X.; Yang, Z.; Gao, L.; Ni, J.; Tsui, O., Flexible supercapacitors based on polyaniline nanowires-infilled 10 nm-diameter carbon nanotube porous membrane by in-situ electrochemical polymerization. Journal of Materials Chemistry A 2016.

    90. D’Arcy, J. M.; El-Kady, M. F.; Khine, P. P.; Zhang, L.; Lee, S. H.; Davis, N. R.; Liu, D. S.; Yeung, M. T.; Kim, S. Y.; Turner, C. L., Vapor-phase polymerization of nanofibrillar poly (3, 4-ethylenedioxythiophene) for supercapacitors. ACS nano 2014, 8 (2), 1500-1510.

    91. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-based supercapacitor with an ultrahigh energy density. Nano letters 2010, 10 (12), 4863-4868.

    92. Ma, Z.; Shao, G.; Fan, Y.; Wang, G.; Song, J.; Shen, D., Construction of Hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 Nanosheets Core– Shell Nanostructure with Excellent Cycling Stability for High-Power Asymmetric Supercapacitor Electrodes. ACS Applied Materials & Interfaces 2016, 8 (14), 9050-9058.

    93. Wang, N.; Yao, M.; Zhao, P.; Zhang, Q.; Hu, W., Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area for supercapacitor electrode materials. Journal of Solid State Electrochemistry 2016, 20 (5), 1429-1434.

    94. Ragone, D. V. Review of battery systems for electrically powered vehicles; 0148-7191; SAE Technical Paper: 1968.

    95. Christen, T.; Carlen, M. W., Theory of Ragone plots. Journal of power sources 2000, 91 (2), 210-216.

    96. McCloskey, B. D., Expanding the Ragone Plot: Pushing the Limits of Energy Storage. J. Phys. Chem. Lett 2015, 6 (18), 3592-3593.

    97. Scherson, D. A.; Palencsár, A., Batteries and electrochemical capacitors. Interface 2006, 15 (1), 17-22.

    98. Hori, Y. In Novel EV society based on motor/capacitor/wireless—Application of electric motor, supercapacitors, and wireless power transfer to enhance operation of future vehicles, Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), 2012 IEEE MTT-S International, IEEE: 2012; pp 3-8.

    99. Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q.; Yonamine, Y.; Wu, K. C.-W.; Hill, J. P., Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chemistry Letters 2014, 43 (1), 36-68.

    100. Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y., Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS nano 2015, 9 (6), 6288-6296.

    101. Zhang, S.; Pan, N., Supercapacitors performance evaluation. Advanced Energy Materials 2015, 5 (6). DOI: 10.1002/aenm.201401401.

    102. Tang, J.; Wang, T.; Salunkhe, R. R.; Alshehri, S. M.; Malgras, V.; Yamauchi, Y., Three‐Dimensional Nitrogen‐Doped Hierarchical Porous Carbon as an Electrode for High‐Performance Supercapacitors. Chemistry–A European Journal 2015, 21 (48), 17293-17298.

    103. Salunkhe, R. R.; Lin, J.; Malgras, V.; Dou, S. X.; Kim, J. H.; Yamauchi, Y., Large-scale synthesis of coaxial carbon nanotube/Ni (OH) 2 composites for asymmetric supercapacitor application. Nano Energy 2015, 11, 211-218.

    104. Kim, M.; Lee, C.; Seo, Y. D.; Cho, S.; Kim, J.; Lee, G.; Kim, Y. K.; Jang, J., Fabrication of Various Conducting Polymers Using Graphene Oxide as a Chemical Oxidant. Chemistry of Materials 2015, 27 (18), 6238-6248.

    105. Prasannan, A.; Truong, T. L. B.; Hong, P.-D.; Somanathan, N.; Shown, I.; Imae, T., Synthesis and characterization of “hairy urchin”-like polyaniline by using β-cyclodextrin as a template. Langmuir 2010, 27 (2), 766-773.

    106. Shown, I.; Imae, T.; Motojima, S., Fabrication of carbon microcoil/polyaniline composite by microemulsion polymerization for electrochemical functional enhancement. Chemical engineering journal 2012, 187, 380-384.

    107. Tang, W.; Peng, L.; Yuan, C.; Wang, J.; Mo, S.; Zhao, C.; Yu, Y.; Min, Y.; Epstein, A. J., Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synthetic Metals 2015, 202, 140-146.

    108. Myrzakozha, D. A.; Hasegawa, T.; Nishijo, J.; Imae, T.; Ozaki, Y., Structural characterization of Langmuir-Blodgett films of octadecyldimethylamine oxide and dioctadecyldimethylammonium chloride. 1. Reorientation of molecular assemblies during the accumulation of upper layers studied by infrared spectroscopy. Langmuir 1999, 15 (10), 3595-3600.

    109. Yuan, C.-Z.; Gao, B.; Zhang, X.-G., Electrochemical capacitance of NiO/Ru 0.35V 0.65O2 asymmetric electrochemical capacitor. Journal of Power sources 2007, 173 (1), 606-612.

    110. Gu, W.; Zhang, W.; Li, X.; Zhu, H.; Wei, J.; Li, Z.; Shu, Q.; Wang, C.; Wang, K.; Shen, W., Graphene sheets from worm-like exfoliated graphite. J. Mater. Chem. 2009, 19 (21), 3367-3369.

    111. Lv, W.; Tang, D.-M.; He, Y.-B.; You, C.-H.; Shi, Z.-Q.; Chen, X.-C.; Chen, C.-M.; Hou, P.-X.; Liu, C.; Yang, Q.-H., Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS nano 2009, 3 (11), 3730-3736.

    112. Wu, Z.-S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang, C.; Cheng, H.-M., Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS nano 2009, 3 (2), 411-417.

    113. Jiang, B.; Tian, C.; Wang, L.; Xu, Y.; Wang, R.; Qiao, Y.; Ma, Y.; Fu, H., Facile fabrication of high quality graphene from expandable graphite: simultaneous exfoliation and reduction. Chemical Communications 2010, 46 (27), 4920-4922.

    114. Zhu, Y.; Murali, S.; Stoller, M. D.; Velamakanni, A.; Piner, R. D.; Ruoff, R. S., Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 2010, 48 (7), 2118-2122.

    115. Qiu, Y.; Guo, F.; Hurt, R.; Külaots, I., Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications. Carbon 2014, 72, 215-223.

    116. Carotenuto, G.; Longo, A.; Nicolais, L.; De Nicola, S.; Pugliese, E.; Ciofini, M.; Locatelli, M.; Lapucci, A.; Meucci, R., Laser-Induced Thermal Expansion of H2SO4-Intercalated Graphite Lattice. The Journal of Physical Chemistry C 2015, 119 (28), 15942-15947.

    117. Mukhopadhyay, P.; Gupta, R. K., Graphite, graphene, and their polymer nanocomposites. CRC Press: 2012.

    118. Makotchenko, V. G.; Grayfer, E. D.; Nazarov, A. S.; Kim, S.-J.; Fedorov, V. E., The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds. Carbon 2011, 49 (10), 3233- 3241.

    119. Geng, X.; Guo, Y.; Li, D.; Li, W.; Zhu, C.; Wei, X.; Chen, M.; Gao, S.; Qiu, S.; Gong, Y., Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene. Scientific reports 2013, 3. DOI:10.1038/srep01134.

    120. Wu, F.; Magasinski, A.; Yushin, G., Nanoporous Li2S and MWCNT-linked Li2S powder cathodes for lithium-sulfur and lithium-ion battery chemistries. Journal of Materials Chemistry A 2014, 2 (17), 6064-6070.

    121. Gao, P. C.; Russo, P. A.; Conte, D. E.; Baek, S.; Moser, F.; Pinna, N.; Brousse, T.; Favier, F., Morphology effects on the supercapacitive electrochemical performances of iron oxide/reduced graphene oxide nanocomposites. ChemElectroChem 2014, 1 (4), 747-754.

    122. Wang, L.; Ji, H.; Wang, S.; Kong, L.; Jiang, X.; Yang, G., Preparation of Fe3 O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 2013, 5 (9), 3793-3799.

    123. Yan, Y.; Kuila, T.; Kim, N. H.; Lee, J. H., Effects of acid vapour mediated oxidization on the electrochemical performance of thermally exfoliated graphene. Carbon 2014, 74, 195-206.

    124. Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S., Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano letters 2012, 12 (4), 1806-1812.

    125. Shulga, Y.; Baskakov, S.; Baskakova, Y.; Volfkovich, Y.; Shulga, N.; Skryleva, E.; Parkhomenko, Y.; Belay, K.; Gutsev, G.; Rychagov, A., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes. Journal of Power Sources 2015, 279, 722-730.

    126. (a) Tien, H. N.; Hien, N. T. M.; Oh, E.-S.; Chung, J.; Kim, E. J.; Choi, W. M.; Kong, B.-S.; Hur, S. H., Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. Journal of Materials Chemistry A 2013, 1 (2), 208-211.
    (b) Li, Z.-F.; Zhang, H.; Liu, Q.; Sun, L.; Stanciu, L.; Xie, J., Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS applied materials & interfaces 2013, 5 (7), 2685-2691.

    127. Shrestha, L. K.; Shrestha, R. G.; Yamauchi, Y.; Hill, J. P.; Nishimura, T.; Miyazawa, K. i.; Kawai, T.; Okada, S.; Wakabayashi, K.; Ariga, K., Nanoporous Carbon Tubes from Fullerene Crystals as the π‐Electron Carbon Source. Angewandte Chemie International Edition 2015, 54 (3), 951-955.

    128. Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M., Raman spectroscopy in graphene. Physics Reports 2009, 473 (5), 51-87.

    129. Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X., Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS nano 2008, 2 (11), 2301-2305.

    130. Araujo, R.; Marques, M. F.; Jonas, R.; Grafova, I.; Grafov, A., Functionalization of Natural Graphite for Use as Reinforcement in Polymer Nanocomposites. Journal of nanoscience and nanotechnology 2015, 15 (8), 6176-6182.

    131. Dresselhaus, M.; Jorio, A.; Saito, R., Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 2010, 1 (1), 89-108.

    132. Foo, C. Y.; Sumboja, A.; Tan, D. J. H.; Wang, J.; Lee, P. S., Flexible and Highly Scalable V2O5‐rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices. Advanced Energy Materials 2014, 4 (12).

    133. Binitha, G.; Soumya, M.; Madhavan, A. A.; Praveen, P.; Balakrishnan, A.; Subramanian, K.; Reddy, M.; Nair, S. V.; Nair, A. S.; Sivakumar, N., Electrospun α-Fe 2 O 3 nanostructures for supercapacitor applications. Journal of Materials Chemistry A 2013, 1 (38), 11698-11704.

    134. Pu, J.; Shen, L.; Zhu, S.; Wang, J.; Zhang, W.; Wang, Z., Fe3O4@ C core– shell microspheres: synthesis, characterization, and application as supercapacitor electrodes. Journal of Solid State Electrochemistry 2014, 18 (4), 1067-1076.

    135. Vajtai, R., Springer handbook of nanomaterials. Springer Science & Business Media: 2013.

    136. Lu, K.; Jiang, R.; Gao, X.; Ma, H., Fe 3 O 4/carbon nanotubes/polyaniline ternary composites with synergistic effects for high performance supercapacitors. RSC Advances 2014, 4 (94), 52393-52401.

    137. Bose, S.; Kuila, T.; Mishra, A. K.; Rajasekar, R.; Kim, N. H.; Lee, J. H., Carbon-based nanostructured materials and their composites as supercapacitor electrodes. Journal of Materials Chemistry 2012, 22 (3), 767-784.

    138. Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R., Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale research letters 2013, 8 (1), 1-9.

    139. Chee, W.; Lim, H.; Harrison, I.; Chong, K.; Zainal, Z.; Ng, C.; Huang, N., Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochimica Acta 2015, 157, 88-94.

    140. Kulal, P.; Dubal, D.; Lokhande, C.; Fulari, V., Chemical synthesis of Fe 2 O 3 thin films for supercapacitor application. Journal of Alloys and Compounds 2011, 509 (5), 2567-2571.

    141. Lee, J. W.; Hall, A. S.; Kim, J.-D.; Mallouk, T. E., A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chemistry of Materials 2012, 24 (6), 1158-1164.

    142. Sun, Z.; Lu, X., A solid-state reaction route to anchoring Ni (OH) 2 nanoparticles on reduced graphene oxide sheets for supercapacitors. Industrial & Engineering Chemistry Research 2012, 51 (30), 9973-9979.

    143. Mitchell, E.; Gupta, R. K.; Mensah-Darkwa, K.; Kumar, D.; Ramasamy, K.; Gupta, B. K.; Kahol, P., Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New Journal of Chemistry 2014, 38 (9), 4344- 4350.

    144. Mu, J.; Chen, B.; Guo, Z.; Zhang, M.; Zhang, Z.; Zhang, P.; Shao, C.; Liu, Y., Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale 2011, 3 (12), 5034-5040.

    145. Zhao, X.; Johnston, C.; Grant, P. S., A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. Journal of Materials Chemistry 2009, 19 (46), 8755-8760.

    146. Xie, K.; Li, J.; Lai, Y.; Lu, W.; Zhang, Z. a.; Liu, Y.; Zhou, L.; Huang, H., Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochemistry Communications 2011, 13 (6), 657-660.

    147. Zhu, J.; Chen, M.; Qu, H.; Luo, Z.; Wu, S.; Colorado, H. A.; Wei, S.; Guo, Z., Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy & Environmental Science 2013, 6 (1), 194- 204.

    148. Shi, W.; Zhu, J.; Sim, D. H.; Tay, Y. Y.; Lu, Z.; Zhang, X.; Sharma, Y.; Srinivasan, M.; Zhang, H.; Hng, H. H., Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry 2011, 21 (10), 3422-3427.

    149. Long, C.; Jiang, L.; Wei, T.; Yan, J.; Fan, Z., High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. Journal of Materials Chemistry A 2014, 2 (39), 16678-16686.

    150. Chaudhari, S.; Bhattacharjya, D.; Yu, J.-S., 1-Dimensional porous α-Fe 2 O 3 nanorods as high performance electrode material for supercapacitors. RSC Advances 2013, 3 (47), 25120-25128.

    151. Mitchell, E.; Candler, J.; De Souza, F.; Gupta, R.; Gupta, B. K.; Dong, L., High performance supercapacitor based on multilayer of polyaniline and graphene oxide. Synthetic Metals 2015, 199, 214-218.

    152. Tucek, J.; Kemp, K. C.; Kim, K. S.; Zboril, R., Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS nano 2014, 8 (8), 7571-7612.

    153. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.

    154. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature materials 2007, 6 (3), 183-191.

    155. Westervelt, R., Graphene nanoelectronics. Science 2008, 320 (5874), 324-325.

    156. Pénicaud, A.; Drummond, C., Deconstructing Graphite: Graphenide Solutions. Accounts of Chemical Research 2013, 46 (1), 129-137.

    157. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I.; Holland, B.; Byrne, M.; Gun'Ko, Y. K., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology 2008, 3 (9), 563-568.

    158. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.

    159. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved synthesis of graphene oxide. ACS nano 2010, 4 (8), 4806-4814.

    160. Chen, J.; Li, Y.; Huang, L.; Li, C.; Shi, G., High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 2015, 81, 826-834.

    161. Dimiev, A. M.; Ceriotti, G.; Metzger, A.; Kim, N. D.; Tour, J. M., Chemical Mass Production of Graphene Nanoplatelets in ∼100% Yield. ACS Nano 2016, 10 (1), 274-279.

    162. Xiang, F.; Mukherjee, R.; Zhong, J.; Xia, Y.; Gu, N.; Yang, Z.; Koratkar, N., Scalable and rapid Far Infrared reduction of graphene oxide for high performance lithium ion batteries. Energy Storage Materials 2015, 1, 9-16.

    163. Ichinokura, S.; Sugawara, K.; Takayama, A.; Takahashi, T.; Hasegawa, S., Superconducting Calcium-Intercalated Bilayer Graphene. ACS Nano 2016, 10 (2), 2761-2765.

    164. Yang, S. L.; Sobota, J. A.; Howard, C. A.; Pickard, C. J.; Hashimoto, M.; Lu, D. H.; Mo, S. K.; Kirchmann, P. S.; Shen, Z. X., Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions. Nat Commun 2014, 5.
    165. Weller, T. E.; Ellerby, M.; Saxena, S. S.; Smith, R. P.; Skipper, N. T., Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Physics 2005, 1 (1), 39-41.

    166. Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn, H. T.; Kaner, R. B., Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry 2005, 15 (9), 974-978.
    167. Matsumoto, M.; Saito, Y.; Park, C.; Fukushima, T.; Aida, T., Ultrahigh- throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids. Nat Chem 2015, 7 (9), 730-736.

    168. Matsumoto, M.; Saito, Y.; Park, C.; Fukushima, T.; Aida, T., Ultrahigh- throughput exfoliation of graphite into pristine ‘single-layer’graphene using microwaves and molecularly engineered ionic liquids. Nature chemistry 2015, 7 (9), 730-736.

    169. Kim, Y.; Cho, E.-s.; Park, S.-J.; Kim, S., One-pot microwave-assisted synthesis of reduced graphene oxide/nickel cobalt double hydroxide composites and their electrochemical behavior. Journal of Industrial and Engineering Chemistry 2016, 33, 108-114.

    170. Cohn, A. P.; Share, K.; Carter, R.; Oakes, L.; Pint, C. L., Ultrafast Solvent- Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene. Nano Letters 2016, 16 (1), 543-548.

    171. Csanyi, G.; Littlewood, P. B.; Nevidomskyy, A. H.; Pickard, C. J.; Simons, B. D., The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nat Phys 2005, 1 (1), 42-45.

    172. Jishi, R.; Dresselhaus, M., Superconductivity in graphite intercalation compounds. Physical Review B 1992, 45 (21), 12465.

    173. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Letters 2008, 8 (1), 36-41.

    174. Ahmed, M. M. M.; Imae, T., Electrochemical properties of thermally expanded magnetic graphene composite with conductive polymer. Physical Chemistry Chemical Physics 2016.

    175. Zhang, J.; Zhu, H.; Wang, M.; Wang, W.; Chen, Z., Electrochemical Determination of Sunset Yellow Based on an Expanded Graphite Paste Electrode. Journal of The Electrochemical Society 2013, 160 (8), H459-H462.

    176. Xiujuan, Y.; Liwen, Q., Preparation for Graphite materials and Study on Electrochemical degradation of Phenol by graphite cathodes. Advances in Materials Physics and Chemistry 2012, 2012.

    177. Paszkiewicz, S.; Szymczyk, A.; Špitalský, Z.; Mosnáček, J.; Rosłaniec, Z., Morphology and thermal properties of expanded graphite (EG)/poly (ethylene terephthalate)(PET) nanocomposites. Chemik 2012, 66 (1), 21-30.

    178. Yan, Q.-L.; Gozin, M.; Zhao, F.-Q.; Cohen, A.; Pang, S.-P., Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 2016, 8 (9), 4799-4851.
    179. Li, J.-h.; Feng, L.-l.; Jia, Z.-x., Preparation of expanded graphite with 160 μm mesh of fine flake graphite. Materials Letters 2006, 60 (6), 746-749.

    180. Ba, S. H.; Jiang, C. H.; Sun, K. B.; Sun, Z. X. In Prepared and Infrared Extinction Characteristics of Micron Expanded Graphite, Advanced Materials Research, Trans Tech Publ: 2011; pp 710-714.

    181. Gambhir, S.; Jalili, R.; Officer, D. L.; Wallace, G. G., Chemically converted graphene: scalable chemistries to enable processing and fabrication. NPG Asia Materials 2015, 7 (6), e186. doi:10.1038/am.2015.47

    182. Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C., Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 2014, 5.

    183. Wu, X.-X.; Li, H.-X.; Liu, G.-Q.; Niu, C.-C.; Wang, G.; Sun, J.-L., Nanocarbon-coated α-Al2O3 composite powders synthesized by high- energy ball milling. 2013.

    184. Dimiev, A. M.; Ceriotti, G.; Metzger, A.; Kim, N. D.; Tour, J. M., Chemical Mass Production of Graphene Nanoplatelets in∼ 100% Yield. ACS Nano, 2016, 10 (1), pp 274–279.

    185. Lee, K. H.; Oh, J.; Son, J. G.; Kim, H.; Lee, S.-S., Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation. ACS applied materials & interfaces 2014, 6 (9), 6361-6368.

    186. Park, K. H.; Lee, D.; Kim, J.; Song, J.; Lee, Y. M.; Kim, H.-T.; Park, J.-K., Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery. Nano Letters 2014, 14 (8), 4306-4313.

    187. Shrestha, L. K.; Shrestha, R. G.; Yamauchi, Y.; Hill, J. P.; Nishimura, T.; Miyazawa, K. i.; Kawai, T.; Okada, S.; Wakabayashi, K.; Ariga, K., Nanoporous Carbon Tubes from Fullerene Crystals as the π-Electron Carbon Source. Angewandte Chemie International Edition 2015, 54 (3), 951-955.

    188. Westervelt, R. M., Graphene Nanoelectronics. Science 2008, 320 (5874), 324- 325.

    189. Salunkhe, R. R.; Hsu, S. H.; Wu, K. C.; Yamauchi, Y., Large‐Scale Synthesis of Reduced Graphene Oxides with Uniformly Coated Polyaniline for Supercapacitor Applications. ChemSusChem 2014, 7 (6), 1551-1556.

    190. Salunkhe, R. R.; Ahn, H.; Kim, J. H.; Yamauchi, Y., Rational design of coaxial structured carbon nanotube–manganese oxide (CNT–MnO2) for energy storage application. Nanotechnology 2015, 26 (20), 204004.

    191. Qu, L.; Zhao, Y.; Khan, A. M.; Han, C.; Hercule, K. M.; Yan, M.; Liu, X.; Chen, W.; Wang, D.; Cai, Z., Interwoven Three-Dimensional Architecture of Cobalt Oxide Nanobrush-Graphene@ NixCo2x(OH)6x for High- Performance Supercapacitors. Nano letters 2015, 15 (3), 2037-2044.

    192. Foo, C. Y.; Sumboja, A.; Tan, D. J. H.; Wang, J.; Lee, P. S., Flexible and Highly Scalable V2O5-rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices. Advanced Energy Materials 2014, 4 (12), DOI: 10.1002/aenm.201400236.

    193. Tiruneh, S. N.; Kang, B. K.; Ngoc, Q. T.; Yoon, D. H., Enhanced electrochemical performance of lamellar structured Co–Ni (OH) 2/reduced graphene oxide (rGO) via hydrothermal synthesis. RSC Advances 2016, 6 (6), 4764-4769.

    194. Zakaria, M. B.; Belik, A. A.; Liu, C. H.; Hsieh, H. Y.; Liao, Y. T.; Malgras, V.; Yamauchi, Y.; Wu, K., Prussian Blue Derived Nanoporous Iron Oxides as Anticancer Drug Carriers for Magnetic‐Guided Chemotherapy. Chemistry–An Asian Journal 2015, 10 (7), 1457-1462.

    195. Shin, T.-H.; Choi, Y.; Kim, S.; Cheon, J., Recent advances in magnetic nanoparticle-based multi-modal imaging. Chemical Society Reviews 2015, 44 (14), 4501-4516.

    196. Thiesen, B.; Jordan, A., Clinical applications of magnetic nanoparticles for hyperthermia. International journal of hyperthermia 2008, 24 (6), 467-474.

    197. Cheng, K. K.; Chan, P. S.; Fan, S.; Kwan, S. M.; Yeung, K. L.; Wáng, Y.-X. J.; Chow, A. H. L.; Wu, E. X.; Baum, L., Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Biomaterials 2015, 44, 155-172.

    198. Weber, M., Power-Loss Optimized Field-Free Line Generation for Magnetic Particle Imaging. 2015.

    199. Legg, V. E., Survey of Magnetic Materials and Applications in the Telephone System. Bell System Technical Journal 1939, 18 (3), 438-464.
    200. Balasubramanian, B.; Das, B.; Skomski, R.; Zhang, W. Y.; Sellmyer, D. J., Novel Nanostructured Rare‐Earth‐Free Magnetic Materials with High Energy Products. Advanced Materials 2013, 25 (42), 6090-6093.

    201. Gao, Y.; Wu, D.; Wang, T.; Jia, D.; Xia, W.; Lv, Y.; Cao, Y.; Tan, Y.; Liu, P., One-step solvothermal synthesis of quasi-hexagonal Fe2O3 nanoplates/graphene composite as high performance electrode material for supercapacitor. Electrochimica Acta 2016, 191, 275-283.

    202. Ahmed, M. M.; Imae, T., Electrochemical properties of a thermally expanded magnetic graphene composite with a conductive polymer. Phys. Chem. Chem. Phys., 2016,18, 10400-10410

    203. Eremin, I.; Chubukov, A. V., Magnetic degeneracy and hidden metallicity of the spin-density-wave state in ferropnictides. Physical Review B 2010, 81 (2), 024511.

    204. Conway, B. E., Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media: 2013.

    205. Tokarev, A.; Yatvin, J.; Trotsenko, O.; Locklin, J.; Minko, S., Nanostructured Soft Matter with Magnetic Nanoparticles. Advanced Functional Materials 2016, 26 (22), 3761-3782.

    206. Yadollahpour, A.; Hosseini, S. A.; Rashidi, S.; Farhadi, F., Applications of Magnetic Nanoparticles as Contrast Agents in MRI: Recent Advances and Clinical Challenges. International Journal of Pharmaceutical Research And Applied Sciences 2016, 5 (2), 251-257.

    207. Mody, V. V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H., Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience 2014, 4 (4), 385-392.

    208. Goodfellow, F. T.; Simchick, G. A.; Mortensen, L. J.; Stice, S. L.; Zhao, Q., Tracking and Quantification of Magnetically Labeled Stem Cells Using Magnetic Resonance Imaging. Advanced Functional Materials 2016, 26 (22), 3899-3915.

    209. Ying, A.; Liu, S.; Li, Z.; Chen, G.; Yang, J.; Yan, H.; Xu, S., Magnetic Nanoparticles‐Supported Chiral Catalyst with an Imidazolium Ionic Moiety: An Efficient and Recyclable Catalyst for Asymmetric Michael and Aldol Reactions. Advanced Synthesis & Catalysis 2016.

    210. Zhang, X.; Qian, J.; Pan, B., Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination. Environmental science & technology 2016, 50 (2), 881-889.

    無法下載圖示 全文公開日期 2021/08/02 (校內網路)
    全文公開日期 2026/08/02 (校外網路)
    全文公開日期 2026/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE