簡易檢索 / 詳目顯示

研究生: 李建璋
Chien-Chang Li
論文名稱: 石墨烯之成長並以石墨烯為電極基板應用於場電子發射元件之研究
Synthesis of graphene and its application as an electrode in field emission device
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 李奎毅
Kuei-Yi Lee
黃鶯聲
Ying-Sheng Huang
邱博文
Po-Wen Chiu
趙良君
Liang-Chiun Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 56
中文關鍵詞: 石墨烯奈米碳管場發射
外文關鍵詞: graphene, carbon nanotube, field emission
相關次數: 點閱:422下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中, 我們以銅箔作為石墨烯之成長基板, 並將銅箔置於可移動式熱化學氣相沉積系統成長石墨烯, 其光穿透率可達85%. 接著, 將最佳化設計之奈米碳管束陣列以熱化學氣相沉積法成長於石墨烯上. 再利用氯化鐵溶液將銅箔去除, 其目的使石墨烯與石墨烯上之奈米碳管束陣列從銅箔上轉移至玻璃基板. 以石墨烯為陽極及石墨烯上之奈米碳管束陣列為場電子發射端, 組合成全碳式場電子發射之元件, 並分析及量測其特性. 本實驗中, 我們定義全碳式場電子發射元件之電流密度達到0.1 mA/cm2時, 其電場為臨界電場. 此元件之臨界電場發生於2.7 V/m. 此外, 在陽極石墨烯塗上螢光粉, 並量測均勻性後呈現出全面螢光現象. 此展現出全碳式場電子發射元件在顯示器應用方面有良好的性質.


In this study, graphene was successfully synthesized on the Cu foil using floating thermal chemical vapor deposition (CVD) system. The transmittance of synthesized graphene achieved over 85%. Further, we successfully grew vertically aligned carbon nanotube (VACNT) bundle arrays onto graphene which was synthesized on the Cu foil using thermal CVD. In order to transfer both graphene and VACNT bundle arrays on graphene from the Cu foil to the glass substrate, the Cu foil was etched by FeCl3 solution. The characteristics of graphene and VACNT on graphene were investigated by Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Graphene as the anode and VACNT bundle arrays on graphene as the field emitter were combined to be the field emission (FE) device. This study defined the threshold field (Eth) as that which corresponded to the FE current density of 0.1 mA/cm2, and the Eth was about 2.7 V/m. Moreover, the fluorescent powder was smeared on the graphene anode to show the uniformly fluorescent screen. The results showed that the all carbon-made FE device exhibited promising the characteristics for FE applications.

目錄 中文摘要------------------------------------------------------------------------------------- I 英文摘要------------------------------------------------------------------------------------- II 致謝------------------------------------------------------------------------------------------- III 目錄------------------------------------------------------------------------------------------- IV 圖解------------------------------------------------------------------------------------------- VI 列表------------------------------------------------------------------------------------------- IX 第一章 介紹-------------------------------------------------------------------------------- 1 1.1 單層石墨的發現----------------------------------------------------------------- 1 1.1.1 單層石墨的結構------------------------------------------------------- 2 1.1.2 石墨烯的電子能帶---------------------------------------------------- 5 1.1.3 單層石墨的聲子能帶------------------------------------------------ 6 1.1.4 石墨烯的拉曼分析---------------------------------------------------- 7 1.1.5 石墨烯的製備方法---------------------------------------------------- 11 1.2 奈米碳管結構與特性----------------------------------------------------------- 15 1.2.1 奈米碳管的結構------------------------------------------------------- 15 1.2.2 奈米碳管的特性------------------------------------------------------- 16 1.3 場電子發射----------------------------------------------------------------------- 18 1.3.1 場發射理論------------------------------------------------------------- 18 1.3.2 Fowler-Nordheim方程式--------------------------------------------- 18 1.4 研究動機-------------------------------------------------------------------------- 20 1.4.1 石墨烯與奈米碳管之結合------------------------------------------ 20 第二章 實驗方式-------------------------------------------------------------------------- 22 2.1 實驗流程圖----------------------------------------------------------------------- 22 2.2 製備過程-------------------------------------------------------------------------- 23 2.2.1 移動式熱化學氣相沉積系統架設--------------------------------- 23 2.2.2 基板準備---------------------------------------------------------------- 23 2.2.3 石墨烯之合成條件---------------------------------------------------- 23 2.2.4 黃光微影技術---------------------------------------------------------- 26 2.2.5 電子束蒸鍍法---------------------------------------------------------- 28 2.2.6 奈米碳管之成長條件------------------------------------------------ 29 2.3 分析與量測儀器----------------------------------------------------------------- 32 2.3.1 拉曼光譜儀------------------------------------------------------------- 32 2.3.2 掃描式電子顯微鏡與X光能量光譜------------------------------ 32 2.3.3 穿透式電子顯微鏡---------------------------------------------------- 33 2.3.4 CCD spectrometer----------------------------------------------------- 33 2.3.5 場發射量測系統------------------------------------------------------- 34 第三章 結果與討論----------------------------------------------------------------------- 36 3.1 石墨烯應用於場電子發射----------------------------------------------------- 36 3.1.1 石墨烯轉移------------------------------------------------------------- 36 3.1.2 石墨烯分析------------------------------------------------------------- 37 3.1.3 石墨烯上之奈米碳管束陣列轉移--------------------------------- 39 3.1.4 石墨烯上之奈米碳管束陣列分析--------------------------------- 40 3.1.5 場電子發射量測------------------------------------------------------- 43 3.1.6 穩定性之量測----------------------------------------------------- 45 3.1.7 螢光實作---------------------------------------------------------------- 48 第四章 結論-------------------------------------------------------------------------------- 51 文獻參考------------------------------------------------------------------------------------ 52 個人簡介------------------------------------------------------------------------------------- 55 論文發表 ----------------------------------------------------------------------------- 56

[1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
[2] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603-605, 1993.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
[4] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, pp. 4359-4363, 2009.
[5] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys., vol. 20, pp. 323202-323228, 2008.
[6] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, “Properties of graphene: a theoretical perspective,” Adv. in Phys., vol. 59, pp. 261-482, 2010.
[7] R. Saito, M. Fujita, and G. Dresselhaus, “Electronic structure of graphene tubeles based on C60,” Phys. Rev B, vol. 46, pp. 1804-1811, 1992.
[8] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, pp. 51-87, 2009.
[9] 呂俊頡, “以化學氣相沉積法控制單層與雙層石墨於圖紋化矽基板之成長,” 國立清華大學電子工程研究所碩士論文, 2008.
[10] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, pp. 47-57, 2007.
[11] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, pp. 187401-1-187401-4, 2006.
[12] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett., vol. 91, pp. 063124-1-063124-3, 2007.
[13] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, “Epitaxial graphene,” Solid State Commun., vol. 143, pp. 92-100, 2007.
[14] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science, vol. 312, pp. 1191-1196, 2006.
[15] A. N. Obraztsov, E. A. Obraztsov, A. V. Tyurnin, and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness,” Carbon, vol. 45, pp. 2017-2021, 2007.
[16] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, pp. 113103-1-113103-3, 2008.
[17] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett., vol. 9, pp. 30-35, 2009.
[18] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, pp. 1312-1314, 2009.
[19] C. S. Hsieh, D. S. Tsai, R. S. Chen, and Y. S. Huang, “Preparation of ruthenium dioxide nanorods and their field emission characteristics,” Appl. Phys. Lett., vol. 85, pp. 3860-3862, 2004.
[20] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A, vol. 119, pp. 173-181, 1928.
[21] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett., vol. 76, pp. 2071-2073, 2000.
[22] R. C. Smith and S. R. P. Silva, “Maximizing the electron field emission performance of carbon nanotube arrays,” Appl. Phys. Lett., vol. 94, pp. 133104-1-133104-3, 2009.
[23] M. Katayama, K.-Y. Lee, S. Honda, T. Hirao, and K. Oura, “Ultra-low-threshold field electron emission from pillar array of aligned carbon nanotube bundles,” Jpn. J. Appl. Phys., vol. 43, pp. L774-L776, 2004.
[24] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, pp. 60-63, 2007.
[25] S. Fujii, S.-I. Honda, H. Machida, H. Kawai, K. Ishida, and M. Katayama, “Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect,” Appl. Phys. Lett., vol. 90, pp. 153108-1-153108-3, 2007.

無法下載圖示 全文公開日期 2016/06/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE