簡易檢索 / 詳目顯示

研究生: 夏予謙
Yu-chien Hsia
論文名稱: 預混合石墨與鎳合金析出石墨烯之研究
Using annealing to generate graphene from pre-mixer of graphite and nickel alloys
指導教授: 林舜天
Shun-Tian Lin
口試委員: 吳翼貽
Ye-Ee Wu
胡泉凌
Chuan-ling Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 46
中文關鍵詞: 石墨烯石墨鎳鉻合金濺鍍真空退火拉曼光譜
外文關鍵詞: graphene, graphite, nickel-chromium alloys, sputtering, vacuum annealing, Raman spectroscopy.
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於石墨烯在各方面的應用上皆表現出驚人的特性,人們對於石墨烯的研究及應用越來越重視,甚至有學者將它稱為能夠改變21世紀之材料。
      本研究係使用PVD濺鍍配合真空退火處理之製程來製造石墨烯,不同於以往的是本研究是利用將靶材混合濺鍍之方式。在嘗試了不同底材、靶材以及實驗參數後,再利用拉曼光譜儀來分析,希望能成功製造出高品質之石墨烯。
      實驗結果顯示,多組實驗數據搭配皆能成功的製造出石墨烯,但以SiO2為底材,靶材選用鎳鉻靶材以及石墨靶材,鎳鉻及石墨的混合之鍍層總厚度為500 nm,退火溫度為950℃,持溫時間為10分鐘,此組實驗參數在利用拉曼光譜儀、光學顯微鏡和掃描式電子顯微鏡觀察,皆顯示出相當不錯的結果。


      In recent years, the research and application of graphene becoming more and more popular. This two-dimensional material exhibits amazing properties on the application of all aspects, some scholars even say that graphene will change the way we live.
      In this thesis, we use sputtering and annealing to manufacture the graphene, but the different from others is that we pre-mix the targets during sputtering. We have been tried different substrates, sputtering targets, and other experiment parameters, then analyzing by Raman spectroscopy.
      The experiment results show that graphene can be manufactured successfully by several combinations of different experiment parameters, and after analyzing by Raman spectroscopy, optical microscope, and scanning electron microscope, we find that the best result is that applying SiO2 as substrates, nickel-chromium and graphite were selected as targets, total coating thickness is 500nm, and the annealing temperature is 950 Celsius holding 10 minutes.

    摘要 I Abstract II 誌謝 III 目 錄 IV 表 目 錄 V 圖 目 錄 VI 第一章 緒論 1 1-1 研究動機 1 1-2 石墨烯之簡介 1 1-3 石墨烯之結構與其特色 3 第二章 文獻回顧 6 2-1 石墨烯的製備方法 6 2-2 拉曼光譜儀分析石墨烯之原理 11 第三章 實驗流程 17 3-1實驗流程 18 第四章 結果與討論 22 第五章 結論 33 第六章 參考文獻 34 AUTHOR 37

    [1] P. R. Wallace, The Band Theory of Graphite, Phys. Rev. 71, 476 (1947).
    [2] A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature Mater. 6, 183 (2007).
    [3] Nikolay Delibozov, “Analysis of Graphene Nanoribbons Passivated with Gold, Copper and Indium”, International Journal of Theoretical and Applied
    Nanotechnology, Volume 1, Issue 2( 2013).
    [4] K. A. Ritter, and J. W. Lyding, “The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons”, Nature Mater. 8, 235-242 (2009).
    [5] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science 320, 1308 (2008).
    [6] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature 438, 197-200 (2005).
    [7] P. W. Sutter, J. I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature Mater. 7, 406-411 (2008).
    [8] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science 324, 1312-1314 (2009).
    [9] Y. Xu et al., “Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets”, J. Am. Chem. Soc., 130, 5856 (2008).
    [10] D. Li et al.,” Processable aqueous dispersions of graphene nanosheets”, Nature Nanotech., 3, 101 (2008).
    [11] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films”, Nature Nanotech. 3, 538-542 (2008).
    [12] X. Liang, Z. Fu, and S. Y. Chou, “Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas on Large Wafer”, Nano Lett. 7, 3840-3844 (2007).
    [13] 陳蓁慧, 石墨稀經由碳擴散鎳薄膜之成長及分析, 成功大學/奈米科技暨微系統工程研究所(2011).
    [14] John Strutt, “On the light from the sky, its polarization and colour”, Philosophical Magazine, series 4, vol.41, pages 107-120, 274-279 (1871).
    [15] J.Y.H. Fuh, L. Lu, C.C. Tan, Z.X. Shen, S. Chew, "Curing characteristics of
    acrylic photopolymer used in stereolithography process", Rapid Prototyping Journal, Vol. 5 Iss: 1, pp.27 – 34(1999).
    [16] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, PRL 97, 187401 (2006).
    [17] A. C. “Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications 143, 47-57 (2007).
    [18] A. C. Ferrari, et al., “Raman spectrum of graphene and graphene layers”. Physical Review Letters 97 (18) (2006).
    [19] J. Y. Hwang, C. C. Kuo, L. C. Chen, K. H. Chen, “Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density”, Nanotechnology 21, 465705 (2010).
    [20] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, “Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene”, Nano Lett. 7 (2), 238–242 (2007).
    [21] http://resource.npl.co.uk/mtdata/phdiagrams/cni.html
    [22] S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, “The Optical Visibility of Graphene:  Interference Colors of Ultrathin Graphite on SiO2”, Nano Lett. 7, 2707-2710 (2007).

    無法下載圖示 全文公開日期 2019/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE