簡易檢索 / 詳目顯示

研究生: 周首成
Shou cheng Chou
論文名稱: 以射頻矽甲烷電漿輔助化學氣相沉積法製備非晶矽薄膜太陽能電池元件之研究
Amorphous Silicon Thin Film Solar Cells Prepared by RF SiH4-PECVD System
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 魏大欽
Ta-Chin Wei
葉秉慧
Bing-Huei Ye
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 射頻電漿輔助化學氣相沉積矽甲烷非晶矽參雜窗口層薄膜太陽能電池
外文關鍵詞: RF-PECVD, silane, a-Si:H, doped, window layer, thin film solar cell
相關次數: 點閱:413下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以射頻矽甲烷電漿輔助化學氣相沉積系統,藉由調配適當的反應參數反應壓力及三甲基硼(TMB)摻雜比等,分別進行本質非晶矽及p型非晶碳化矽薄膜之沉積,並針對薄膜的結構及光電性質加以分析,以探求非晶矽薄膜太陽能電池元件的最適化製程條件。
    實驗結果顯示,反應壓力為200 mTorr時所沉積的本質非晶矽薄膜之光學能隙為1.74eV,在電性表現方面,其暗導電率為2.61×10-10 S/cm,且光敏感度達5.03×104。
    另一方面,針對p型非晶碳化矽薄膜的製備,以三甲基硼(TMB)至對矽甲烷流量比為3%時,甲烷對矽甲烷流量比為2時,所成長的p型非晶碳化矽薄膜暗導電率為3.1×10-8 S/cm,光學能隙可達到2.12 eV,其電性及光學性質適宜作為非晶矽薄膜太陽能電池元件窗口層的應用。
    最後,利用多重腔體連結式PECVD裝置製作單層接面非晶矽薄膜太陽能電池,現階段所得最佳元件之開路電壓、短路電流及填充係數分為811mV、14.81 mA/cm2及64.65 %,光電轉換效率達7.77 %。考慮減少p型層與本質層非晶層的界面復合,於兩者界面加入摻雜程度較低的p-層後,電池元件的開路電壓和短路電流分別提升到840 mV 及 15.46 mA/cm2 且光電轉換效率提升到8.21%


    In this thesis, the intrinsic hydrogenated amorphous silicon (a-Si:H) thin films and p-type hydrogenated amorphous silicon carbide (a-SiC:H) thin film were deposited on glass by radio-frequency silane plasma enhanced chemical vapor deposition system. The thin films were prepared under different experimental parameters, such as reaction pressure and TMB flow ratio. For optimization of the layer, the dependence of electrical and optical properties were investigated.
    In the first part, we deposited intrinsic a-Si:H by altering the deposition condition. We set up reaction pressure at 200 mTorr, and the optical band gap of the film deposited was 1.74 eV. The dark conductivity and photosensitivity were 2.61×10-10 S/cm and 5.03×104, respectively.
    In the second part, we deposited p-type a-SiC:H with silane and TMB. The dark conductivity and optical gap of the film deposited at [TMB]/[SiH4] = 3% were 3.1×10-8 S/cm and 2.12 eV, respectively. The result showed that the films were more transparent than amorphous silicon.
    Finally, we deposited amorphous silicon thin film solar cell. The short-circuit current(Jsc), open-circuit voltage(Voc) and fill factor(FF) of device were 14.81 mA/cm2, 811 mV and 64.65 %, respectively. The optoelectronic conversion efficiency of 7.77 % was achieved. And we consider reducing the p/I interface of the rcombination center , so we used low-doped p-layer in the p/I interface .In the result , we deposited amorphous silicon thin film solar cell. The short-circuit current(Jsc), open-circuit voltage(Voc) of device were 15.46 mA/cm2, 840 mV, respectively. The optoelectronic conversion efficiency was up to 8.21 %

    摘 要 I Abstract III 誌 謝 V 目 錄 VII 圖 索 引 X 表 索 引 XV 第一章 緒論 1 1.1 前言 1 1.1.1太陽能電池的歷史與發展 1 1.1.2 薄膜型太陽能電池的發展 3 1.1.2 薄膜型太陽能電池的發展 3 1.2非晶矽薄膜的性質 6 1.3非晶矽薄膜光衰退現象 11 1.4 電漿矽甲烷的分解程序及表面成長機構 13 1.5矽氫鍵結對非晶矽薄膜特性的影響 17 1.6 懸鍵缺陷及弱鍵分布情形對非晶矽薄膜的影響 20 1.7 非晶矽薄膜太陽能電池元件結構 21 第二章 實驗方法與步驟 24 2.1實驗流程圖 24 2.2 實驗藥品及氣體 25 2.3 實驗裝置 28 2.4 分析儀器 30 2.4.1表面形態輪廓儀 (surface profiler) 30 2.4.2傅立葉紅外線光譜儀 (FTIR) 31 2.4.3紫外光/可見光光譜儀 (UV/VIS) 32 2.4.4 IV量測系統 (IV) 35 2.4.5太陽光模擬器 (solar simulator) 37 2.4.6分光效率量測儀 (IPCE) 41 2.5 實驗步驟 42 2.5.1玻璃基材清洗 42 2.5.2成長非晶矽薄膜及非晶碳化矽薄膜 43 2.5.3成長非晶矽薄膜太陽能電池元件 44 第三章 實驗結果與討論 45 3.1成長本質非晶矽薄膜 45 3.1.1 反應壓力對i層非晶矽之特性影響 45 3.2摻雜濃度對成長p型非晶碳化矽薄膜成長效應 61 3.3非晶矽薄膜太陽能電池的p-i-n製備 70 3.3.1 p+-p--i-n製備型薄膜太陽能電池的製作 76 第四章 結論 82 參考文獻 84 作者簡介 87

    1. 經濟部能源局,油價資訊管理與分析系統.

    2. KRI Report, Solar Cells, 8 (2005).

    3. S.O. Kasap, Principles of Electronic Materials and Devices, pp.81 (2006).

    4. M. Stutzmann, D.K. Biegelsen, R.A. Street, Phys.Re v. B, 35, 5666 (1987).

    5. M.H. Cohen, H. Fritzsche and S.R. Ovshinsky, Phys. Rev. Lett. 22, 1065 (1969).

    6. D.E. Carson, C.R. Wronski, Amorphous silicon Solar Cells, Pennsylvania State University, USA (2007).

    7. J. Tauc, Mat. Res. Bull, 5, 721 (1970).

    8. D.L. Staebler, C.R. Wronski, Appl. Phys. Lett.31, 292 (1977).

    9. M. Pinarbasi, M.J. Kushner, J.R. Abelson, J. Appl. Phys, 68, 2255 (1990).

    10. H.M. Branz, Solid State Commun, 105, pp.387 (1998).

    11. Y .Hishikawa, M.M. Sasaki, S. Tsuge, S. Tsuda, Jpn. J. Appl. Phys. 33, 4373 (1994).

    12. A. Matsuda, Jpn. J. Appl. Phys. 43, 7909 (2004).

    13. A. Matsuda, M. Takai, T. Nishimoto, M. Kondo, Sol. Energy Mater. Sol. Cells 78, 3 (2003).

    14. F. Gaspari, S.K. Oleary, S. Zukotynski, J.M. Perz, J. Non-Cryst. Solid. 55, 149 (1993).

    15. M.H. Brodsky, M. Cardona, J.J. Cuomo, Phys. Rev. B 16, 3556 (1977).

    16. P.J. Zanzucchi, C.R. Wronski, D.E. Carlson, J. Appl. Phys. 48, 5227 (1977).

    17. G. Lucovsky, R.J. Nemanich, J.C. Knights, Phys. Rev. B.19, 2064 (1979).

    18. J. Robertson, M.J. Powell, Thin Solid Films 337, 32 (1999).

    19. A. Kolodziej, Opto-Electron. Rev. 12, 21 (2004).

    20. K. Maeda, I. Umezu, J. Non-Cryst. Solids 227, 43 (1998).

    21. W.B. Jackson, M. Stutzmann, C.C. Tsai, Solar Cells 21, 431 (1987).

    22. E.A.G. Hamers, V.S. Wgjhm, J. Bezemer, H. Meiling, W.F. van der Weg, J. Non-Cryst. Solids 226, 205 (1998).

    23. S. Sumiya, Y. Mizutani, R. Yoshida, M. Hori, T. Goto, M. Ito, T. sukada, S. Samukawa, J. Appl. Phys. 88, 576 (2000).

    24. M. Isomura, M. Kondo, A. Matsuda, Jpn. J. Appl. Phys. 41, 1947 (2002).

    25. M. Kondo, A. Matsuda, Curr. Opin. Solid State & Mat. Sci. 6, 445 (2002).

    26. V.L. Dalal, J. Graves, J. Leib, Appl. Phys. Lett. 85, 1413 (2004).

    27. R.C. Ross, J. Jaklik, J. Appl. Phys. 55, 3785 (1984).

    28. J.R. Doyle, D.A. Doughty, A. Gallagher, J. Appl. Phys. 68, 4384 (1990).
    29. 翁得期,化學氣相沉積法低溫成長奈米多晶矽薄膜及氧化矽奈米線之研究,pp.38,國立成功大學化學工程學所博士論文,(2004).

    30. B. Rech , C. Beneking , H. Wagner, Sol. Energy Mater. Sol. Cells 41, 475 (1996).

    QR CODE