簡易檢索 / 詳目顯示

研究生: 姚其瀚
Chi-Han Yao
論文名稱: 二硫化鉬摻雜錸作為電化學觸媒之氧氣還原研究
Rhenium-doped molybdenum disulfide catalyst for oxygen reduction reaction
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
許宏彬
Hung-Pin Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 77
中文關鍵詞: 過渡金屬硫化物氧氣還原反應
外文關鍵詞: transition metal dichalcogenides, oxygen reduction reaction
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在燃料電池中,陰極觸媒的催化能力對於燃料電池的表現影響極大,本實驗成功的將錸摻雜於二硫化鉬中使晶體之結晶性降低以提升晶體對於氧氣還原反應之活性,首先,利用高溫爐管合成出摻雜不同錸金屬濃度之二硫化鉬,接下來,透過超音波震盪之方式,將摻雜錸金屬的二硫化鉬晶體剝離成較小尺寸,最後藉由高速離心取得不同尺寸的晶體,並對其進行觸媒活性之探討,在電化學分析的結果中顯示,利用X光繞射所分析出之結晶性與晶體在氧氣還原反應中的催化能力有相對應的關係,此外,為了增加觸媒具備之活性點位,本實驗提高離心轉速以收集尺寸較小之晶體,使本實驗可針對晶體尺寸對於氧氣還原活性之影響進行探討,從電化學分析的結果中可看出,隨著離心轉速的提升,觸媒對於氧氣還原反應的催化能力也隨之增強,並使氧氣還原反應之過程逐步接近四電子轉移,其中以錸摻雜濃度為50%並收集於離心轉速2000 rpm下之晶體,具備最高的催化活性,其最大之電流密度以及最高的電子轉移數出現在掃描電壓為-1.2 V時,分別為-5.24 mA cm-2以及3.91。


    Catalytic activity of cathode catalyst has a great influence on fuel cell performance. In this research we have successfully controlled the doping concentration of rhenium to decrease the crystallization of rhenium-doped MoS2 (Mo1-xRexS2) and therefore increase the catalytic activity for oxygen reduction reaction (ORR). Mo1-xRexS2 was grown by furnace synthesized and followed by chemically exfoliated into smaller particle size using long term ultrasonication. Different size particles were separated and collected by high speed centrifugation. The electrochemical analysis shows that the crystallization of Mo1-xRexS2 defined by X-ray diffraction (XRD) had an obvious effect on ORR. Moreover, in order to increase the exposed active sites, we collected the Mo1-xRexS2 particles at high centrifugation speed to have a investigation of particle size effect on ORR activity. The catalytic activity of Mo0.5Re0.5S2 increased with the decrease of particle size and behaved nearly four-electron transfer toward ORR. The current density of Mo0.5Re0.5S2 collected at 2000 rpm can reach to -5.24 mA cm2 and has the electron transfer number (n value) of 3.91 at -1.2 V.

    第一章、緒論 1.1 前言 1.2 質子交換膜燃料電池介紹 1.2.1 質子交換膜燃料電池工作原理 1.2.2 陰極氧氣還原反應 1.2.3 氧氣還原反應之觸媒發展現況 1.3 二硫化鉬 1.3.1 二硫化鉬的晶體結構 1.3.2 二硫化鉬的觸媒應用 1.4 錸與二硫化錸 1.4.1 二硫化錸的晶體結構 1.4.2 錸的電化學特性 1.4.3 二硫化錸的觸媒應用 1.5 研究動機 1.5.1 改變結晶性 1.5.2 提高比表面積 第二章、實驗方法與設備 2.1 實驗流程 2.2 實驗步驟 2.2.1 Mo1-xRexS2之晶體成長 2.2.2 化學剝離 2.2.3 離心 2.2.4 工作電極之製備 2.3 量測與分析 2.3.1 掃描式電子顯微鏡(SEM)與能量散佈光譜分析儀(EDS) 2.3.2 X光繞射分析儀(XRD) 2.3.3 電化學分析 2.3.3.1 旋轉盤電極(RDE)的量測 2.3.3.2 旋轉環盤電極(RRDE)的量測 第三章、結果與討論 3.1 Mo1-xRexS2初始成分確認 3.2 結晶性分析 3.3 Mo1-xRexS2晶體之電化學特性分析 3.3.1 Mo1-xRexS2晶體之線性伏安法(LSV)分析 3.3.2 Mo1-xRexS2晶體之電子轉移數與過氧化氫產率分析 3.3.3 Mo1-xRexS2晶體之電化學特性探討 3.4 離心轉速改變下晶體之觸媒特性分析 3.4.1離心轉速改變下Mo0.3Re0.7S2晶體之觸媒特性分析 3.4.1.1 Mo0.3Re0.7S2晶體之電極表面結構分析 3.4.1.2 不同離心轉速下Mo0.3Re0.7S2晶體之成分分析 3.4.1.3 Mo0.3Re0.7S2晶體之線性伏安法分析 3.4.1.4 Mo0.3Re0.7S2晶體之電子轉移數與過氧化氫產率分析 3.4.1.5 Mo0.3Re0.7S2晶體之電化學特性探討 3.4.2 離心轉速改變下Mo0.5Re0.5S2晶體之觸媒特性分析 3.4.2.1 Mo0.5Re0.5S2晶體之電極表面結構分析 3.4.2.2 不同離心轉速下Mo0.5Re0.5S2晶體之成分分析 3.4.2.3 Mo0.5Re0.5S2晶體之線性伏安法分析 3.4.2.4 Mo0.5Re0.5S2晶體之電子轉移數與過氧化氫產率分析 3.4.2.5 Mo0.5Re0.5S2晶體之電化學特性探討 第四章、結論 參考文獻

    [1] E.-A. Cho, J.-J. Ko, H.-Y. Ha, S.-A. Hong, K.-Y. Lee, T.-W. Lim, and I.-H. Oh, “Characteristics of the PEMFC repetitively brought to temperatures below 0℃,ˮ J. Electrochem. Soc., vol. 150, pp. A1667-A1670, 2003.
    [2] M. Wakizoe, O. A. Velev, and S. Srinivasan, “Analysis of proton exchange membrane fuel cell performance with alternate membranes,ˮ Electrochim. Acta, vol. 40, pp. 335-344, 1995.
    [3] M. Khoeiniha and H. Zarabadipour, “Optimal control design for proton exchange membrane fuel cell via genetic algorithm,ˮ Int. J. Electrochem. Sci., vol. 7, pp. 6302-6312, 2012.
    [4] A. M. Gómez-Marín, R. Rizo, and J. M. Feliu, “Some reflections on the understanding of the oxygen reduction reaction at Pt(111),ˮ Beilstein J. Nanotechnol., vol. 4, pp. 956-967, 2013.
    [5] H. S. Wroblowa, Y.-C. Pan, and G. Razumney, “Electroreduction of oxygen a new mechanistic criterion,ˮ J. Electroanal. Chem., vol. 69, pp. 195-201, 1976.
    [6] J. L. Fernandez, V. Raghuveer, A. Manthiram, and A. J. Bard, “Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells,ˮ J. Am. Chem. Soc., vol. 127, pp. 13100-13101, 2005.
    [7] T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, “Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co,ˮ J. Electrochem. Soc., vol. 146, pp. 3750-3756, 1999.
    [8] H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, “Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs,ˮ Appl. Cata. B, vol. 56, pp. 9-35, 2005.
    [9] K. J. J. Mayrhofer, B. B. Blizanac, M. Arenz, V. R. Stamenkovic, P. N. Ross, and N. M. Markovic, “The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis,ˮ J. Phys. Chem. B, vol. 109, pp. 14433-14440, 2005.
    [10] J. Zhang, K. Sasaki, E. Sutter, and R. R. Adzic, “Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters,ˮ Science, vol. 315, pp. 220-222, 2007.
    [11] Y.-K. Zhou, K. Neyerlin, T. S. Olson, S. Pylypenko, J. Bult, H. N. Dinh, T. Gennett, Z.-P. Shao, and R. O'Hayre, “Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports,ˮ Energy Environ. Sci., vol. 3, pp. 1437-1446, 2010.
    [12] R. Kou, Y.-Y. Shao, D.-H. Wang, M. H. Engelhard, J. H. Kwak, J. Wang, and L. Dai, “Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction,ˮ Electrochem. Commun., vol. 11, pp. 954-957, 2009.
    [13] M. M. Saleh, M. I. Awad, F. Kitamura, and T. Ohsaka, “Sulphur dioxide poisoning and recovery of platinum nanoparticles: Effect of particle size,ˮ Int. J. Electrochem. Sci., vol. 7, pp. 12004-12020, 2012.
    [14] K.-P. Gong, F. Du, Z.-H. Xia, M. Durstock, and L. Dai, “Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction,ˮ Science, vol. 323, pp. 760-764, 2009.
    [15] S. Li, L. Zhang, J. Kim, M. Pan, Z. Shi, and J.-J. Zhang, “Synthesis of carbon-supported binary FeCo-N non-noble metal electrocatalysts for the oxygen reduction reaction,ˮ Electrochim. Acta, vol. 55, pp. 7346-7353, 2010.
    [16] I. Roche and K. Scott, “Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution,ˮ J. Appl. Electrochem., vol. 39, pp. 197-204, 2009.
    [17] H.-L. Wang, Y.-Y. Liang, Y.-G. Li, and H.-J. Dai, “Co1-xS-graphene hybrid: A high-performance metal chalcogenide electrocatalyst for oxygen reduction,ˮ Angew. Chem. Int. Ed., vol. 50, pp. 10969-10972, 2011.
    [18] G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, “High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt,ˮ Science, vol. 332, pp. 443-447, 2011.
    [19] F. Jaouen, J. Herranz, M. Lefévre, J. P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov, and E. A. Ustinov, “Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction,ˮ ACS Appl. Mater. Interfaces, vol. 1, pp. 1623-1639, 2009.
    [20] D. V. Deak, E. J. Biddinger, and U. S. Ozkan, “Carbon corrosion characteristics of CNx nanostructures in acidic media and implications for ORR performance,ˮ J. Appl. Electrochem., vol. 41, pp. 757-763, 2011.
    [21] Y.-Y. Li, Y.-J. Li, E.-B. Zhu, T. McLouth, C.-Y. Chiu, X.-Q. Huang, and Y. Huang, “Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite,ˮ J. Am. Chem. Soc., vol. 134, pp. 12326-12329, 2012.
    [22] L.-P. Zhang and Z.-H. Xia, “Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells,ˮ J. Phys. Chem. C, vol. 115, pp. 11170-11176, 2011.
    [23] Z.-Y. Lin, G. Waller, Y. Liu, M.-L. Liu, and C.-P. Wong, “Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction,ˮ Adv. Energy Mater., vol. 2, pp. 884-888, 2012.
    [24] D. Kong, J.-J. Cha, H. Wang, H.-R. Lee, and Y. Cui, “First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction,ˮ Energy Environ. Sci., vol. 6, pp. 3553-3558, 2013.
    [25] T.-Y. Wang, D.-L. Gao, J.-Q. Zhuo, Z.-W. Zhu, P. Papakonstantinou, Y. Li, and M.-X. Li, “Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles,ˮ Chem. Eur. J., vol. 19, pp. 11939-11948, 2013.
    [26] H.-T. Wang, Z.-Y. Lu, S.-C. Xu, D. Kong, J. J. Cha, G.-Y. Zheng, P.-C. Hsu, K. Yan, D. Bradshaw, F. B. Prinz, and Y. Cui, “Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction,ˮ Proc. Natl. Acad. Sci. U.S.A., vol. 110, pp. 19701-19706, 2013.
    [27] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,ˮ Nat. Mater., vol. 13, pp. 1128-1134, 2014.
    [28] Q.-H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,ˮ Nature Nanotechnol., vol. 7, pp. 699-712, 2012.
    [29] H. Li, J. Wu, Z.-Y. Yin, and H. Zhang, “Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets,ˮ Acc. Chem. Res., vol. 47, pp. 1067-1075, 2014.
    [30] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M.-W. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,ˮ Nano Lett., vol. 11, pp. 5111-5116, 2011.
    [31] J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, and J. P. Lemmon, “Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries,ˮ Chem. Mater., vol. 22, pp. 4522-4524, 2010.
    [32] Y. Yang, H.-L. Fei, G. Ruan, C.-S. Xiang, and J. M. Tour, “Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices,ˮ Adv. Mater., vol. 26, pp. 8163-8168, 2014.
    [33] T. F. Jaramillo, K. P. Jrgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,ˮ Science, vol. 317, pp. 100-102, 2007.
    [34] R. Raicheff, M. Aroyo, and S. Arpadjan, “Electrochemical corrosion behavior of iron-nickel alloys in acidic sulphide solutions,ˮ Mater. Corros., vol. 37, pp. 633-637, 1986.
    [35] S.-J. Xu, D. Li, and P.-Y. Wu, “One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction,ˮ Adv. Funct. Mater., vol. 25, pp. 1127-1136, 2015.
    [36] Y.-G. Li, H.-L. Wang, L.-M. Xie, Y.-Y. Liang, G.-S. Hong, and H.-J. Dai, “MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction,ˮ J. Am. Chem. Soc., vol. 133, pp. 7296-7299, 2011.
    [37] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J.-J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,ˮ Science, vol. 331, pp. 568-571, 2011.
    [38] T.-Y. Wang, J.-Q. Zhuo, Y. Chen, K.-Z. Du, P. Papakonstantinou, Z.-W. Zhu, Y.-H. Shao, and M.-X. Li, “Synergistic catalytic effect of MoS2 nanoparticles supported on gold nanoparticle films for a highly efficient oxygen reduction reaction,ˮ ChemCatChem, vol. 6, pp. 1877-1881, 2014.
    [39] H.-T. Wang, Q.-F. Zhang, H.-B. Yao, Z. Liang, H.-W. Lee, P.-C. Hsu, G. Zheng, and Y. Cui, “High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials,ˮ Nano Lett., vol. 14, pp. 7138-7144, 2014.
    [40] Y.-J. Feng, A. Gago, L. Timperman, and N. Alonso-Vante, “Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance,ˮ Electrochim. Acta, vol. 56, pp. 1009-1022, 2011.
    [41] S. Tongay, H. Sahin, C.-H. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J.-Y. Yan, D. F. Ogletree, S. Aloni, J. Ji, S.-S. Li, J.-B. Li, F. M. Peeters, and J.-Q. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,ˮ Nat. Commun., vol. 5, p. 3252, 2014.
    [42] E.-F. Liu, Y.-J. Fu, Y.-J. Wang, Y.-Q. Feng, H.-M. Liu, X.-G. Wan, W. Zhou, B.-G. Wang, L.-B. Shao, C.-H. Ho, Y.-S. Huang, Z.-Y. Cao, L.-G. Wang, A.-D. Li, J.-W. Zeng, F.-Q. Song, X.-R. Wang, Y. Shi, H.-T. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D.-Y. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,ˮ Nat. Commun., vol. 6, p. 3252, 2015.
    [43] R. Ducros, M. Housley, and G. Piquard, “Influnce of structural defects, steps and kinks, on oxygen adsorption on rhenium single crystals,ˮ Phys. Status Solidi A, vol. 56, pp. 187-193, 1979.
    [44] F. T. Wagner, H. A. Gasteiger, R. Makharia, K. C. Neyerlin, E. L. Thompson, and S. G. Yan, “Catalyst development needs and pathways for automotive PEM fuel cells,ˮ ECS Trans., vol. 3, pp. 19-29, 2006.
    [45] J.-L. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis, and R. R. Adzic, “Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics,ˮ J. Am. Chem. Soc., vol. 127, pp. 12480-12481, 2005.
    [46] H. I. Karan, K. Sasaki, K. Kuttiyiel, C. A. Farberow, M. Mavrikakis, and R. R. Adzic, “Catalytic activity of platinum monolayer on iridium and rhenium alloy nanoparticles for the oxygen reduction reaction,ˮ ACS Catal., vol. 2, pp. 817-824, 2012.
    [47] M. T. Greiner, T. C. R. Rocha, B. Johnson, A. Klyushin, A. Knop-Gericke, and R. Schlögl, “The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study,ˮ Z. Phys. Chem., vol. 228, pp. 521-541, 2014.
    [48] T. Fujita, Y. Ito, Y. Tan, H. Yamaguchi, D. Hojo, A. Hirata, D. Viory, M. Chhowalla, and M.-W. Chen, “Chemically exfoliated ReS2 nanosheets,ˮ Nanoscale, vol. 6, pp. 12458-12462, 2014.
    [49] D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, D. Voiry, M. Chhollawa, M.-W. Chen, “Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction,ˮ Nano Lett., vol. 13, pp. 6222-6227, 2013.
    [50] D. Voiry, H. Yamaguchi, J.-W. Li, R. Silva, D. C. B. Alves, T. Fujita, M.-W. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution,ˮ Nat. Mater., vol. 12, pp. 850-855, 2013.
    [51] J.-J. Xiao, X.-J. Bian, L. Liao, S. Zhang, C. Ji, and B.-H. Liu, “Nitrogen-doped mesoporous graphene as a synergistic electrocatalyst matrix for high-performance oxygen reduction reaction,ˮ ACS Appl. Mater. Interfaces, vol. 6, pp. 17654-17660, 2014.
    [52] H. Kim, K. Lee, S.-I. Woo, and Y. Jung, “On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons,ˮ Phys. Chem. Chem. Phys., vol. 13, pp. 17505-17510, 2011.
    [53] Y.-C. Lin, D. O. Dumcenco, H. P. Komsa, Y. Niimi, A. V. Krasheninnikov, Y.-S. Huang, and K. Suenaga, “Properties of individual dopant atoms in single-layer MoS2: Atomic structure, migration, and enhanced reactivity,ˮ Adv. Mater., vol. 26, pp. 2857-2861, 2014.
    [54] D. N. Dunn, L. E. Seitzman, and I. L. Singer, “The origin of an anomalous, low 2 peak in X-ray diffraction spectra of MoS2 films grown by ion beam assisted deposition,ˮ J. Mater. Res., vol. 12, pp. 1191-1194, 1997.
    [55] Y.-F. Sun, S. Gao, F.-C. Lei, and Y. Xie, “Atomically-thin two-dimensional sheets for understanding active sites in catalysis,ˮ Chem. Soc. Rev., vol. 44, pp. 623-636, 2015.
    [56] M.-K. Min, J.-H. Cho, K.-W. Cho, and H. Kim, “Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications,ˮ Electrochim. Acta, vol. 45, pp. 4211-4217, 2000.
    [57] J. Masa and W. Schuhmann, “Systematic selection of metalloporphyrin-based catalysts for oxygen reduction by modulation of the donor-acceptor intermolecular hardness,ˮ Chem. Eur. J., vol. 19, pp. 9644-9654, 2013.
    [58] T.-Y. Wang, H.-C. Zhu, J.-Q. Zhuo, Z.-W. Zhu, P. Papakonstantinou, G. Lubarsky, J. Lin, and M.-X. Li, “Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level,ˮ Anal. Chem., vol. 85, pp. 10289-10295, 2013.
    [59] H. Li, H. Liu, Z. Jong, W. Qu, D.-S. Geng, X.-L. Sun, and H.-J. Wang, “Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media,ˮ Int. J. Hydrogen Energy, vol. 36, pp. 2258-2265, 2011.

    無法下載圖示 全文公開日期 2020/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE