簡易檢索 / 詳目顯示

研究生: 劉家銘
Chia-ming Liu
論文名稱: 以有機金屬化學氣相沉積法於矽基板上成長一維的氮化銦鎵奈米線陣列之研究
Fabrication of Ternary InxGa1−xN Nanowire Arrays on Si Substrates by MOCVD technique
指導教授: 戴龑
Yian Tai
口試委員: 吳季珍
Jih-jen Wu
林麗瓊
Li-chyong Chen
陳貴賢
Kuei-hsien Chen
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 86
中文關鍵詞: 調控發光矽基板化學氣相沈積氮化銦鎵奈米線穿透式電子顯微鏡
外文關鍵詞: tunable emission, silicon, MOCVD, InGaN nanowires, TEM
相關次數: 點閱:215下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以有機金屬化學氣相沉積法於矽基板上成長出一維的單晶氮化銦鎵奈米線陣列。由愛克斯光繞射儀(XRD)分析可以得知所成長的氮化銦鎵奈米線為纖鋅礦結構。而由穿透式電子顯微鏡(TEM)的結果顯示奈米線呈現單晶結構且沿特定晶面的成長方向。在光學性質方面以光激發光譜(PL)測量結果發現藉由調控成長條件能夠改變銦在奈米線中的比例進而調控本質能隙的發光波長。根據實驗結果,我們成功地利用與工業界相同的有機金屬化學氣相沉積法製程於矽基板上製造出大面積且單相結構的奈米線。此成果將有機會應用到業界的生產規模。


    We demonstrated the catalytic growth of InxGa1−xN nanowire (NW) arrays (0.06≦x≦0.17) on silicon substrate using metal-organic chemical vapor deposition technique. X-ray diffraction characterization confirmed that the InxGa1−xN NWs are single phase wurtzite structure without any binary phase. Transmission electron microscopy results showed that the single crystalline NWs were grown in (100) direction and dislocation-free. Photoluminescence results showed that the band gap of InxGa1−xN NW can be modulated down to the visible spectrum region depending on the ratio of In in the nanowires which can be modulated by varying the growth conditions. Our results suggest an approach to fabricate single phase, large area NW on silicon with standard MOCVD method, which offers an opportunity to transfer the production from research to industrial scale.

    Abstract I 中文摘要 II 致謝 III Table of Contents VI List of Figures IX List of Tables XIII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Nitride-based materials 3 1.3 Indium Gallium Nitride (InGaN) nanowire 6 1.3.1 Growth technique 11 1.3.1.1 Hydride Vapor Phase Epitaxy (HVPE) 11 1.3.1.2 Metalorganic Chemical Vapor Deposition (MOCVD) 12 1.3.1.3 Molecular Beam Epitaxy (MBE) 12 1.4 Challenges in the synthesis of InGaN 15 1.5 Low temperature approach 16 1.6 Motivation 18 Chapter 2 A brief review of growth and fundamental theory 20 2.1 Growth mechanism 20 2.1.1 Vapor-Liquid-Solid (VLS) growth 20 Chapter 3 Experimental methods and tools 23 3.1 Experimental flow chart 23 3.2 Experimental setup 24 3.2.1 MOCVD system 24 3.2.2 Precursors 26 Triethylgallium 26 Trimethylindium 27 Dimethylhydrazine 28 Ammonia 29 3.3 Experimental details 30 Sample preparation prior to growth 30 Growth parameters 30 3.4 Characterization techniques 31 3.4.1 Field Emission Scanning Electron Microscopy (FE-SEM) 31 3.4.2 Transmission Electron Microscopy (TEM) 32 3.4.3 micro-Raman Spectrometer (μ-Raman) 33 3.4.4 Photoluminescence (PL) 34 3.4.5 Ultraviolet-visible spectroscopy (UV-vis) 35 3.4.6 X-ray Diffraction (XRD) 36 3.4.7 X-ray Photoelectron Spectroscopy (XPS) 37 Chapter 4 Result and Discussion 38 4.1 The effect of growth temperature on InGaN nanowires grown by TEGa-TMIn-NH3 MOCVD system 39 4.1.1 Morphology of InGaN nanowires 40 4.1.2 Composition of InGaN nanowires 42 4.1.3 Crystallinity of InGaN nanowires 43 4.1.4 Optical properties of InGaN nanowires 45 4.2 The effect of group III flow rate on InGaN nanowires grown by TEGa-TMIn-NH3 MOCVD system 47 4.2.1 Morphology of InGaN nanowires 48 4.2.2 Crystallinity of InGaN nanowires 50 4.2.3 Optical properties of InGaN nanowires 51 4.3 The effect of NH3 flow rate on InGaN nanowires grown by TEGa-TMIn-NH3 MOCVD system 52 4.3.1 Morphology of InGaN nanowires 53 4.3.2 Composition of InGaN nanowires 55 4.3.3 Crystallinity of InGaN nanowires 56 4.3.4 Optical properties of InGaN nanowires 58 4.4 Influence of alloy composition on structural and optical properties of ternary InGaN nanowires 60 4.5 Nanostructure characterization of InGaN nanowires grown by TEGa-TMIn-NH3 MOCVD system 63 Chapter 5 Conclusion 67 References 68

    [1] RENEWABLES 2010 GLOBAL STATUS REPORT
    [2] B. N. Pantha, J. Y. Lin, H. X. Jiang, "III-Nitride nanostructures for energy generation", presented at Proceedings of SPIE - The International Society for Optical Engineering, San Francisco, CA, 2010.
    [3] A. M. Basilio, Y. K. Hsu, W. H. Tu, C. H. Yen, G. M. Hsu, O. Chyan, Y. Chyan, J. S. Hwang, Y. T. Chen, L. C. Chen, K. H. Chen, Journal of Materials Chemistry 2010, 20, 8118.
    [4] P. Yang, R. Yan, M. Fardy, Nano Letters 2010, 10, 1529.
    [5] P. L. Ong, I. A. Levitsky, Energies 2010, 3, 313.
    [6] J. Wu, Journal of Applied Physics 2009, 106, 011101.
    [7] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, Applied Physics Letters 2007, 91, 223106.
    [8] S. C. Shi, S. Chattopadhyay, C. F. Chen, K. H. Chen, L. C. Chen, Chemical Physics Letters 2006, 418, 152.
    [9] M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, L. C. Chen, Advanced Functional Materials 2006, 16, 537.
    [10] T. L. Tansley, C. P. Foley, Journal of Applied Physics 1986, 59, 3241.
    [11] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, S. Ohoya, Journal of Crystal Growth 2001, 227-228, 481.
    [12] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Physica Status Solidi (B) Basic Research 2002, 229, R1.
    [13] D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, Z. Liliental-Weber, Applied Physics Letters 2002, 80, 258.
    [14] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager Iii, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, Applied Physics Letters 2002, 80, 3967.
    [15] S. Nakamura, M. Senoh, N. Iwasa, S.-i. Nagahama, Japanese Journal of Applied Physics, Part 2: Letters 1995, 34, L797.
    [16] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Applied Physics Letters 1996, 69, 1477.
    [17] S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Japanese Journal of Applied Physics, Part 2: Letters 1996, 35, L74.
    [18] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, J. Y. Lin, Applied Physics Letters 2001, 78, 1303.
    [19] M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Japanese Journal of Applied Physics, Part 2: Letters 2006, 45, L659.
    [20] T. Kozaki, S. I. Nagahama, T. Mukai, "Recent progress of high-power GaN-based laser diodes", presented at Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, 2007.
    [21] T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, S. C. Wang, Applied Physics Letters 2008, 92, 141102.
    [22] Y. Nanishi, Y. Saito, T. Yamaguchi, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 2003, 42, 2549.
    [23] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager Iii, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, S. Kurtz, Journal of Applied Physics 2003, 94, 6477.
    [24] O. Jani, I. Ferguson, C. Honsberg, S. Kurtz, Applied Physics Letters 2007, 91, 132117.
    [25] M. Vazquez, C. Algora, I. Rey-Stolle, J. R. Gonzalez, Progress in Photovoltaics: Research and Applications 2007, 15, 477.
    [26] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey Jr, B. P. Keller, U. K. Mishra, S. P. DenBaars, Applied Physics Letters 1997, 71, 2572.
    [27] R. Singh, D. Doppalapudi, T. D. Moustakas, L. T. Romano, Applied Physics Letters 1997, 70, 1089.
    [28] S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, J. A. Turner, Journal of the Electrochemical Society 1995, 142, L238.
    [29] K. Fujii, T. Karasawa, K. Ohkawa, Japanese Journal of Applied Physics, Part 2: Letters 2005, 44, L543.
    [30] K. Fujii, K. Ohkawa, Japanese Journal of Applied Physics, Part 2: Letters 2005, 44, L909.
    [31] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. Denbaars, S. Nakamura, Applied Physics Letters 2007, 91.
    [32] K. Fujii, K. Kusakabe, K. Ohkawa, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 2005, 44, 7433.
    [33] J. Li, J. Y. Lin, H. X. Jiang, Applied Physics Letters 2008, 93, 162107.
    [34] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, H. X. Jiang, Applied Physics Letters 2010, 96.
    [35] E. N. Hurwitz, M. Asghar, A. Melton, B. Kucukgok, L. Su, M. Orocz, M. Jamil, N. Lu, I. T. Ferguson, Journal of Electronic Materials 2010, 40, 513.
    [36] J. W. Ager Iii, N. Miller, R. E. Jones, K. M. Yu, J. Wu, W. J. Schaff, W. Walukiewicz, Physica Status Solidi (B) Basic Research 2008, 245, 873.
    [37] B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, G. Pomrenke, Applied Physics Letters 2008, 92, 042112.
    [38] N. Yoshimoto, T. Matsuoka, T. Sasaki, A. Katsui, Applied Physics Letters 1991, 59, 2251.
    [39] S. Nakamura, T. Mukai, Jpn. J. Appl. Phys. 1992, 31, L1457.
    [40] W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, R. A. Stall, Journal of Applied Physics 1998, 84, 4452.
    [41] N. A. El-Masry, E. L. Piner, S. X. Liu, S. M. Bedair, Applied Physics Letters 1998, 72, 40.
    [42] H. P. D. Schenk, P. De Mierry, M. Lau‥ gt, F. Omne` s, M. Leroux, B. Beaumont, P. Gibart, Applied Physics Letters 1999, 75, 2587.
    [43] A. Yamamoto, Y. Nakagawa, T. Sugiura, A. Hashimoto, Physica Status Solidi (A) Applied Research 1999, 176, 237.
    [44] B. N. Pantha, J. Li, J. Y. Lin, H. X. Jiang, Applied Physics Letters 2008, 93, 182107.
    [45] P. F. Yang, S. R. Jian, Y. S. Lai, C. S. Yang, R. S. Chen, Journal of Alloys and Compounds 2008, 463, 533.
    [46] Y. Guo, X. L. Liu, H. P. Song, A. L. Yang, X. Q. Xu, G. L. Zheng, H. Y. Wei, S. Y. Yang, Q. S. Zhu, Z. G. Wang, Applied Surface Science 2010, 256, 3352.
    [47] D. Iida, K. Nagata, T. Makino, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, A. Bandoh, T. Udagawa, Applied Physics Express 2010, 3, 075601.
    [48] B. Liu, W. Luo, R. Zhang, Z. Zou, Z. Xie, Z. Li, D. Chen, X. Xiu, P. Han, Y. Zheng, Physica Status Solidi (C) Current Topics in Solid State Physics 2010, 7, 1817.
    [49] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager Iii, E. E. Haller, H. Lu, W. J. Schaff, Applied Physics Letters 2002, 80, 4741.
    [50] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, A. Suzuki, Physica Status Solidi (B) Basic Research 2002, 234, 750.
    [51] Z. Liliental-Weber, D. N. Zakharov, K. M. Yu, J. W. Ager Iii, W. Walukiewicz, E. E. Haller, H. Lu, W. J. Schaff, Journal of Electron Microscopy 2005, 54, 243.
    [52] E. Iliopoulos, A. Georgakilas, E. Dimakis, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, N. T. Pelekanos, Physica Status Solidi (A) Applications and Materials 2006, 203, 102.
    [53] Y. E. Romanyuk, D. Kreier, Y. Cui, K. M. Yu, J. W. Ager Iii, S. R. Leone, Thin Solid Films 2009, 517, 6512.
    [54] I. Gherasoiu, K. M. Yu, L. A. Reichertz, V. M. Kao, M. Hawkridge, J. W. Ager, W. Walukiewicz, Physica Status Solidi (B) Basic Research 2010, 247, 1747.
    [55] S. L. Hwang, K. S. Jang, K. H. Kim, H. S. Jeon, H. S. Ann, M. Yang, S. W. Kim, Y. Honda, M. Yamaguchi, N. Sawaki, J. Yoo, S. M. Lee, M. Koike, Physica Status Solidi (C) Current Topics in Solid State Physics 2007, 4, 125.
    [56] S. D. Lester, F. A. Ponce, M. G. Craford, D. A. Steigerwald, Applied Physics Letters 1995, 66, 1249.
    [57] S. Nakamura, Science 1998, 281, 956.
    [58] T. Kuykendall, P. Ulrich, S. Aloni, P. Yang, Nature Materials 2007, 6, 951.
    [59] E. Ertekin, P. A. Greaney, D. C. Chrzan, T. D. Sands, Journal of Applied Physics 2005, 97, 1.
    [60] L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, S. Crankshaw, Applied Physics Letters 2007, 90, 043115.
    [61] A. Kikuchi, M. Kawai, M. Tada, K. Kishino, Japanese Journal of Applied Physics, Part 2: Letters 2004, 43, L1524.
    [62] H. M. Kim, Y. H. Cho, H. Lee, S. I. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, K. S. Chung, Nano Letters 2004, 4, 1059.
    [63] F. Qian, S. Gradecak, Y. Li, C. Y. Wen, C. M. Lieber, Nano Letters 2005, 5, 2287.
    [64] F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, C. M. Lieber, Nature Materials 2008, 7, 701.
    [65] Y. Dong, B. Tian, T. J. Kempa, C. M. Lieber, Nano Letters 2009, 9, 2183.
    [66] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho, K. S. Chung, Applied Physics Letters 2002, 81, 2193.
    [67] H. M. Kim, W. C. Lee, T. W. Kang, K. S. Chung, C. S. Yoon, C. K. Kim, Chemical Physics Letters 2003, 380, 181.
    [68] H. M. Kim, H. Lee, S. I. Kim, S. R. Ryu, T. W. Kang, K. S. Chung, Physica Status Solidi (B) Basic Research 2004, 241, 2802.
    [69] A. P. Vajpeyi, A. O. Ajagunna, K. Tsagaraki, M. Androulidaki, A. Georgakilas, Nanotechnology 2009, 20, 325605.
    [70] K. M. Wu, Y. Pan, C. Liu, Applied Surface Science 2009, 255, 6705.
    [71] Kemin Wu, Tao Han, Kai Shen, Bo Liu, Ting Peng, Yang Pan, Handong Sun, C. Liu, Journal of Nanoscience and Nanotechnology 2010, 10, 8139.
    [72] D. D. Koleske, A. E. Wickenden, R. L. Henry, M. E. Twigg, Journal of Crystal Growth 2002, 242, 55.
    [73] H. Chen, R. M. Feenstra, J. E. Northrup, T. Zywietz, J. Neugebauer, Physical Review Letters 2000, 85, 1902.
    [74] H. Ohta, S. P. DenBaars, S. Nakamura, Journal of the Optical Society of America B: Optical Physics 2010, 27, B45.
    [75] R. S. Wagner, W. C. Ellis, Applied Physics Letters 1964, 4, 89.
    [76] Y. Wu, P. Yang, Journal of the American Chemical Society 2001, 123, 3165.
    [77] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, P. Yang, Nano Letters 2003, 3, 867.
    [78]http://www.safcglobal.com/safc-hitech/en-us/home/overview/products/gallium/triethylgallium.html
    [79]http://www.safcglobal.com/safc-hitech/en-us/home/overview/products/indium/trimethylindium.html
    [80]http://www.safcglobal.com/safc-hitech/en-us/home/overview/products/nitrogen/1-1-dimethylhyrazine.html
    [81] C. Hahn, Z. Zhang, A. Fu, C. H. Wu, Y. J. Hwang, D. J. Gargas, P. Yang, ACS Nano 2011, 5, 3970.
    [82] D. Doppalapudi, S. N. Basu, K. F. Ludwig Jr, T. D. Moustakas, Journal of Applied Physics 1998, 84, 1389.
    [83] S. Kim, K. Lee, H. Lee, K. Park, C. S. Kim, S. J. Son, K. W. Yi, Journal of Crystal Growth 2003, 247, 55.
    [84] Y. J. Sun, O. Brandt, B. Jenichen, K. H. Ploog, Applied Physics Letters 2003, 83, 5178.
    [85] M. Bosi, R. Fornari, Journal of Crystal Growth 2004, 265, 434.
    [86] C. He, Q. Wu, X. Wang, Y. Zhang, L. Yang, N. Liu, Y. Zhao, Y. Lu, Z. Hu, ACS Nano 2011, 5, 1291.
    [87] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmuller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harma, A. Hashimoto, A. Yamamoto, E. E. Haller, Physica Status Solidi (B) Basic Research 2002, 234, 787.
    [88] P. Schley, R. Goldhahn, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, H. Lu, W. J. Schaff, M. Kurouchi, Y. Nanishi, M. Rakel, C. Cobet, N. Esser, Physical Review B - Condensed Matter and Materials Physics 2007, 75, 205204.
    [89] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, P. Yang, Nano Letters 2003, 3, 1063.
    [90] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P. Yang, Nature Materials 2004, 3, 524.

    QR CODE