簡易檢索 / 詳目顯示

研究生: 陳彥廷
Yen-Ting Chen
論文名稱: 微影製程圖案化高分子刷於矽晶片製備磁控致動器
Fabrication of the Patterned Magnetism-induced Polymer/Iron Brushes on Silicon Wafer as Magnetic Actuator
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳志堅
Jyh-Chien Chen
黃智峯
Chih-Feng Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 135
中文關鍵詞: 智慧型高分子原子轉移自由基聚合法高分子光柵光柵微影製程
外文關鍵詞: Smart polymers, atom transfer radical polymerization, polymer grating, grating, lithography
相關次數: 點閱:356下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用原子轉移自由基聚合法(Atom transfer radical polymerization, ATRP)於圖案化矽晶圓表面進行表面起始聚合(Surface-initiated polymerization)製備出聚(甲基丙烯酸)( PMAA)高分子刷。使得奈米鐵粒子固定於高分子刷製備出具有磁場感應光柵。
    結果顯示可在線/間距比率為1:1.5的圖案化光阻晶圓表面長出線寬為1、1.5、2、3 um的一維光柵,而在空氣中高度依序為346.51、359.46、359.93、364.8 nm的結構。由於高分子刷一端固定於表面,另一端可隨環境的改變而呈現不同樣貌,將一維光柵置於pH=4水中,發現高度依序變為706.02、648.21、625.32、724.14 nm,而置於pH=9水中,高度依序變為946、995、950、1080 nm,可知高分子受不同酸鹼環境時影響會有500nm高度上的差異,可應用於環境檢測器。進一步將磁性奈米粒子吸附於PMAA高分子刷上,利用磁力控制高分子刷的形貌,製作出磁感應型高分子。


    In this study, we grafted Poly(PMAA) brushes from the initiator-modified surface of patterned silicon wafer by atom transfer radical polymerization (ATRP) to fabricate the Sequentially, we immobilized iron nanoparticles (Fe3O4) on the PMAA side chain to generate magnetism -induced polymer grating.
    One-dimensional grating of the polymer brushes on the silicon wafer with the different widths are 1 , 1.5 , 2 , 3 m and thickness is 346.51、359.46、359.93、364.8 nm. Polymer brush is Stimuli-responsive; that is they dehydrate and collapse when Environment is change .When the pH is 4 , thicknesses were changed to 706.02、648.21、625.32、724.14 nm,due to the presponsive pH-behavior of PMAA . Than the thicknesses were switched to 946、995、950、1080 nm at pH 9. There are almost 500nm changes of thickness, so we cam make the application in grating sensor.
    Furthermore, we immobilized iron nanoparticles (Fe3O4) on the PMAA brushes, and then we use magnetic field to change the morphology of the PMAA brushes surface. In the future we can produce a magnetism-induced morphology actuator.

    指導教授推薦書 0 審定書 2 摘要 I Abstract II 致謝 III 目錄 VI 圖目錄 X 表目錄 XV 1. 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 2. 理論與文獻回顧 3 2.1. 高分子刷簡介 3 2.2. 自組裝單分子層 6 2.3. 原子轉移自由基聚合法 8 2.4. 液態除氣法 11 2.5. 酸鹼感應型高分子 13 2.6. 微影製成[24] 15 2.7. 晶圓蝕刻 22 2.8. 光柵效應 25 3. 儀器簡介 31 3.1. 原子力顯微鏡(AFM) 31 3.2. 掃描式電子顯微鏡(SEM) 35 3.3. X光光電能譜儀 (XPS) 37 4. 實驗流程與方法 40 4.1. 實驗流程圖 40 4.2. 實驗藥品 41 4.3. 實驗儀器 43 4.4. 實驗步驟 45 4.4.1. 矽晶片表面起始高分子刷製作 45 4.4.2. 微影製程製備聚圖案化光阻層 48 4.4.3. 蝕刻製成製作圖案化矽晶圓 50 4.4.4. 圖案化矽晶片表面起始聚合高分子刷 52 4.4.5. 微米級線型圖案化矽晶圓表面起始聚合高分子刷 55 4.4.6. Fe3O4奈米粒子之製備 58 5. 結果與討論 59 5.1. 矽晶圓表面高分子刷分析 59 5.1.1. FTIR光譜 59 5.1.2. ESCA化學能譜分析 61 5.1.3. 接觸角親疏水測定 66 5.2. 圖案化高分子刷表面分析 69 5.2.1. 微影製程光阻圖案 69 5.2.2. 圖案化APTES自組裝層 72 5.2.3. 圖案化ATRP起始劑層 73 5.2.4. 圖案化PMAA高分子刷 74 5.3. 高分子聚合於線型蝕刻表面分析 81 5.3.1. 線型矽晶圓表面分析 81 5.3.2. 高分子聚合於線型矽晶圓 84 5.4. 高分子酸鹼性測試 86 5.4.1. 高分子酸鹼形貌測試 86 5.4.2. 高分子回復性測試 89 5.5. 高分子吸附奈米鐵微結構 90 5.5.1. 奈米鐵粒子合成與檢測 92 5.5.2. 鐵奈米粒子吸附於PMAA型態測定 93 5.5.3. 圖案化鐵奈米粒子型態測定 95 5.5.4. 蝕刻圖案化鐵奈米粒子型態測定 97 5.6. MFM性質與型態分析 98 5.7. 磁力控制表面形貌 100 6. 結論 106 參考文獻 107 保密同意書 116

    [1] N. Bunjes, S. Paul, J. Habicht, O. Prucker, J. Rühe, and W. Knoll, "On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures," Colloid and Polymer Science, vol. 282, pp. 939-945, 2004.
    [2] P. de Gennes, "Conformations of polymers attached to an interface," Macromolecules, vol. 13, pp. 1069-1075, 1980.
    [3] B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Progress in Polymer Science, vol. 25, pp. 677-710, 2000.
    [4] S. Milner, "Polymer brushes," Science, vol. 251, pp. 905-914, 1991.
    [5] Y. T. M. Ejaz, T. Fukuda, "Controlled grafting of a well-defined polymer on porous glass filter by surface-initiated atom transfer radical polymerization," polymer, vol. 42, pp. 6811-6815, 2001.
    [6] M. B. a. J. R. he, "Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a Planar Solid Surface," Macromolecules, vol. 32, pp. 2309-2316, 1999.
    [7] W. J. B. B. Zhao, "Polymer brushes surface-immobilized macromolecules," Prog. Polym. Sci, vol. 25, pp. 677-710, 2000.
    [8] A. Kopf, J. Baschnagel, J. Wittmer, and K. Binder, "On the adsorption process in polymer brushes: a Monte Carlo study," Macromolecules, vol. 29, pp. 1433-1441, 1996.
    [9] R. Zajac and A. Chakrabarti, "Irreversible polymer adsorption from semidilute and moderately dense solutions," Physical Review E, vol. 52, p. 6536, 1995.
    [10] D. L. P. a. W. A. Z. W. C. Bigelow, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
    [11] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
    [12] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
    [13] D. G. a. S. M. Husson, "Room Temperature Growth of Surface-Confined Poly(acrylamide) from Self-Assembled Monolayers Using Atom Transfer Radical Polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [14] D. Gopireddy and S. M. Husson, "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [15] B. M. E. Delamarche, * H. Kang, and Ch. Gerber, "Thermal Stability of Self-Assembled Monolayers," Langmuir, vol. 10, pp. 4103-4108, 1994.
    [16] J. A. H. a. J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
    [17] S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," The Journal of Physical Chemistry B, vol. 103, pp. 4212-4217, 1999.
    [18] J.-K. Chen, J.-H. Wang, C.-C. Cheng, J.-Y. Chang, and F.-C. Chang, "Polarity-indicative two-dimensional periodic relief gratings of tethered poly (methyl methacrylate) on silicon surfaces for visualization in volatile organic compound sensing," Applied Physics Letters, vol. 102, p. 151906, 2013.
    [19] G. Masci, L. Giacomelli, and V. Crescenzi, "Atom Transfer Radical Polymerization ofN-Isopropylacrylamide," Macromolecular Rapid Communications, vol. 25, pp. 559-564, 2004.
    [20] K. M. a. J. Xia, "Atom Transfer Radical Polymerization," Chem. Rev., vol. 101, pp. 2921-2990, 2001.
    [21] T. Bhuvana, B. Kim, X. Yang, H. Shin, and E. Kim, "Reversible Full‐Color Generation with Patterned Yellow Electrochromic Polymers," Angewandte Chemie International Edition, vol. 52, pp. 1180-1184, 2013.
    [22] Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano letters, vol. 5, pp. 5-9, 2005.

    [23] M. G. Santonicola, G. W. de Groot, M. Memesa, A. Meszynska, and G. J. Vancso, "Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces," Langmuir, vol. 26, pp. 17513-9, Nov 16 2010.
    [24] H. Xiao, "半導體製程技術導論, 羅正忠和張鼎張譯," ed: 二版, 臺灣培生教育出版, 臺北市, 民國九十三年, 2007.
    [25] P. M. Morse, P. M. Morse, and P. M. Morse, Vibration and sound vol. 2: McGraw-Hill New York, 1948.
    [26] Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, et al., "Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties," The Journal of Physical Chemistry B, vol. 107, pp. 7406-7413, 2003.
    [27] Y. S. F. J. Xu, ‡ Z. P. Cheng,†,§ X. L. Zhu,§ and E. T. K. C. X. Zhu, *,† and K. G. Neoh†, "Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations," Macromolecules, vol. 38, pp. 6524-6528, 2005.
    [28] F. Zhou, L. Jiang, W. Liu, and Q. Xue, "Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two-Step Surface-Initiated Atomic-Transfer Radical Polymerization," Macromolecular Rapid Communications, vol. 25, pp. 1979-1983, 2004.
    [29] Rong Dong, ‡ Sitaraman Krishnan,‡ Barbara A. Baird,† Manfred Lindau,§ and Christopher K. Ober*, "Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon Surfaces," Biomaterials, vol. 8, pp. 3082-3092, 2007.
    [30] M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux, "Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion," ACS nano, vol. 6, pp. 7227-7233, 2012.
    [31] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, et al., "Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces," The Journal of Physical Chemistry C, vol. 116, pp. 6289-6297, 2012.
    [32] Y. Zhang, Q. Jin, J. Zhao, C. Wu, Q. Fan, and Q. Wu, "Facile fabrication of pH-sensitive core–shell nanoparticles based on HEC and PMAA via template polymerization," European Polymer Journal, vol. 46, pp. 1425-1435, 2010.
    [33] N. Van Landschoot, E. Kelder, J. Schoonman, Synthesis and characterization of LiCo1− x Fe x VO4 prepared by a citric acid complex method, Journal of Solid State Electrochemistry, 8 (2003) 28-33.
    [34] A. Dias, A. Hussain, A. Marcos, A. Roque, A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnology advances, 29 (2011) 142-155.
    [35] X. Wang, C. Zhao, P. Zhao, P. Dou, Y. Ding, P. Xu, Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system, Bioresource technology, 100 (2009) 2301-2304.

    [36] Y. Wang, X. Wang, G. Luo, Y. Dai, Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system, Bioresource technology, 99 (2008) 3881-3884.
    [37] S. Xuan, Y.-X.J. Wang, J.C. Yu, K.C.-F. Leung, Preparation, characterization, and catalytic activity of core/shell Fe3O4@ polyaniline@ Au nanocomposites, Langmuir, 25 (2009) 11835-11843.
    [38] H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads, Bioresource technology, 99 (2008) 6271-6279.
    [39] E. Hee Kim, H. Sook Lee, B. Kook Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, Journal of Magnetism and Magnetic Materials, 289 (2005) 328-330.
    [40] O. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlen, Magnetic separation techniques in diagnostic microbiology, Clinical microbiology reviews, 7 (1994) 43-54.
    [41] P. Gupta, C. Hung, F. Lam, D. Perrier, Synthesis and characterization of microspheres containing adriamycin and magnetite, International journal of pharmaceutics, 43 (1988) 167-177.
    [42] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, Journal of Magnetism and Magnetic Materials, 293 (2005) 483-496.
    [43] A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, International Journal of Hyperthermia, 25 (2009) 499-511.
    [44] U. Häfeli, Scientific and clinical applications of magnetic carriers, Springer, 1997.
    [45] M.N. Widjojoatmodjo, A.C. Fluit, R. Torensma, J. Verhoef, Comparison of immunomagnetic beads coated with protein A, protein G, or goat anti-mouse immunoglobulins Applications in enzyme immunoassays and immunomagnetic separations, Journal of immunological methods, 165 (1993) 11-19.
    [46] 金. 孙. 邢. 李步海, "聚甲基丙烯酸修饰壳聚糖微球的制备及其对Zn2+ 和Cu2 + 的吸附," 武漢大學學報, vol. 56, pp. 273-278, 2010.
    [47] Y. K. Jhon, S. Arifuzzaman, A. E. Ozcam, D. J. Kiserow, and J. Genzer, "Formation of polyampholyte brushes via controlled radical polymerization and their assembly in solution," Langmuir, vol. 28, pp. 872-82, Jan 10 2012.
    [48] J. Klug, L. A. Pérez, E. A. Coronado, and G. I. Lacconi, "Chemical and Electrochemical Oxidation of Silicon Surfaces Functionalized with APTES: The Role of Surface Roughness in the AuNPs Anchoring Kinetics," The Journal of Physical Chemistry C, vol. 117, pp. 11317-11327, 2013.
    [49] T. AIDA, "living and immortal polymerization," Prog. Polym. Sci, vol. 19, pp. 469-528, 1994.
    [50] M. G. Santonicola, G. W. de Groot, M. Memesa, A. Meszynska, and G. J. Vancso, "Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces," Langmuir, vol. 26, pp. 17513-9, Nov 16 2010.

    無法下載圖示 全文公開日期 2020/07/29 (校內網路)
    全文公開日期 2025/07/29 (校外網路)
    全文公開日期 2020/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE