簡易檢索 / 詳目顯示

研究生: 莊瑾山
Chin-shan Chuang
論文名稱: 鐵-29錳-4鋁-0.9碳合金鋼之時效相變化研究
Phase transformations during aging processes in an Fe-29Mn-4Al-0.9C alloy
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
雷添壽
Tien-Shou Lei
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 128
中文關鍵詞: TEM高錳鋼相變化
外文關鍵詞: TEM, high Mn steel, phase transformation
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究鐵-29.3錳-4.0鋁-0.92碳合金(wt%)的相變化情形。合金於1100與775℃之間為單一的沃斯田體,而於750至600℃時,於沃斯田體晶粒內有M3C、M23C6及κ’型碳化物的析出。於600至500℃時,於沃斯田體晶粒內存有由M3C或是M23C6碳化物所組成的波來體組織。此波來體組織的共析溫度約在625至600℃之間,且其恆溫變態曲線的鼻部區溫度約於550℃附近。
    比較不同組成相內所含的溶質原子量,其含錳量的高低依序為:M3C碳化物、M23C6碳化物、κ’型碳化物、沃斯田體相及肥粒體相。以含鋁量的高低依序為:肥粒體相、κ’型碳化物、沃斯田體相、M23C6碳化物及M3C碳化物,其中M3C碳化物幾乎不含有鋁,此點似乎是M3C碳化物的特性。於兩種波來體組織內,肥粒體晶粒內的溶質組成皆為高鋁、低錳及低碳。
    本研究發現兩組M3C碳化物與鄰近沃斯田體基地間的方位關係:前者為[101]C//[ ]γ及( )C//(220)γ;而後者為[001]C//[ ]γ以及(210)C//( )γ。於M3C碳化物所組成的波來體組織,亦找到兩組M3C碳化物與肥粒體間的方位關係:第一組的方位關係為[001]C//[113]α及( )C//( )α;而第二組為[113]C//[111]α及( )C//( )α。另外,於M23C6碳化物與肥粒體所形成的波來體中也觀察到兩組方位關係:前者的方位關係為[ ]C6//[ ]α及(111)C6// (110)α;而後者為[ ]C6//[ ]α及( )C6//( )α。


    This eassy is dedicated in the phase transformation of a Fe-29.3Mn- 4.0Al-0.92C(wt%) steel. At temperatures range from 1100 to 775℃, a single austenite phase presents in the steel; from 750 to 600℃, M3C, M23C6 and κ’ type carbides precipitate in the austenitic grains; and from 600 to 500℃, pearlites consisting of both M3C and M23C6 carbide layers with ferritic layers, independently, coexist in the austenitic grains. The eutectoid temperatures of the pearlites are between 625 and 600℃. Moreover, the nose of the TTT curves for the isothermal transformations of pearlites is near 550℃.
    Comparing the solute concentrations in the constituent phases, we found the sequence of the Mn concentration from high to low is as follows: M3C, M23C6, κ’ type carbride, austenite and ferrite. The sequence of aluminum concentration is: ferrite, κ’ type carbride, austenite, M23C6 and M3C carbide. M3C carbide is almost free of aluminum. It seems to be a characteristic feature of M3C carbide. The ferritic grains in both different pearlites contain high Al, low C and Mn.
    We found several orientation relationships between carbides and their neighboring grains. [101]C//[ ]γ, ( )C//(220)γ and [001]C//[ ]γ, (210)C//( )γ are orientation relationships between M3C carbide and austenite. [001]C//[113]α, ( )C//( )α and [113]C//[111]α, ( )C//( )α are between M3C carbide and ferrite. Finally, [ ]C6//[ ]α, (111)C6// (110)α and [ ]C6//[ ]α, ( )C6//( )α are orientation relationships between M23C6 carbide and ferrite.

    表目錄XIV 第一章 前 言1 第二章 文獻回顧4 2.1 固態相變化4 2.2鐵錳碳合金的共析反應6 2.3 合金鋼中的碳化物7 2.4 M23C6碳化物8 2.5 Κ型碳化物9 第三章 實驗方法23 3.1 合金熔煉23 3.2 合金鑄錠加工24 3.3 合金熱處理24 3.4 試片製作流程25 3.5 分析儀器28 第四章 結果與討論36 4.1 高溫熱處理36 4.2 低溫恆溫熱處理37 4.3 層狀Κ’型碳化物48 4.4 碳化物與波來體50 4.5 晶體間之方位關係51 第五章 結論105 參考文獻110

    1.R.E. Reed-Hill, “Physical Metallurgy Principle”, 3rd, (1992) .
    2.C.R. Hutchinson, R.E. Hackenberg, G. J. Shiflet, Acta Mat. 52, 3565 (2004).
    3.D.S. Zhou, G.J. Shiflet, Scripta Metallurgica , 27, 1215 (1992).
    4.C.R. Hutchinson and G.J. Shiflet, Scripta Meterialia, 50, 1 (2004) .
    5.S.A. Hackey and G.J. Shiflet, Acta Metall., 35, 1017 (1987).
    6.S.A. Hackney, G.J. Shiflet, Scripta Metal., 19, 757 (1985).
    7.S.A. Myers, C.C. Koch, Ultramicroscopy, 30, 193 (1989)
    8.Yoshisato Kimura, Kazuyuki Handa, Kunio Hayashi, Intermatallics.,12, 607 (2004)
    9.S.C. Tjong, Material Science and Engineering A, 203, L13~L16 (1995)
    10.Kiyohito Ishida, Hiroshi Ohtani, Naoya Satoh, Ryosuke Kainuma and Taiji Nishizawa, ISIJ International., 30, 680 (1990)
    11.薛凱云,“鐵-12錳-4鋁-0.5碳合金鋼之亞共析型反應研究”,國立台灣科技大學機械工程研究所,碩士論文(2007)。
    12.許中杰,”鐵-20錳-4鋁-0.5碳合金鋼之時效相變化研究”, 國立台灣科技大學機械工程研究所,碩士論文(2008) 。
    13.Y.L. Lin, C.P. Chou, Scripta Metall., 27, 67 (1992).
    14.蘇文淵,“鐵-30.1錳-0.64碳合金鋼之時效相變化研究”,國立台灣科技大學機械工程研究所,碩士論文(2009)。
    15.張育仁,“鐵-30錳-1.7鋁-1碳合金鋼之時效相變化研究”,國立台灣科技大學機械工程研究所,碩士論文(2009)。
    16.D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2/e, (1992).
    17.A.J. Boger, W.G. Burgers, Acta Metallurgica, 12, 255 (1964) .
    18.L.Bracke, L.Kestens, Scripta Meterialia, 57, 385 (2007) .
    19.E.Bayraktar, F.A. Khalid, Journal of Materials Processing Technology, 147, 145 (2004) .
    20.B.Cina, Acta Metallurgica, 6, 748 (1958) .
    21.P.M. Kelly, Acta Metallurgica, 13, 635 (1965) .
    22.林東一,“鐵-21錳-0.4碳合金之麻田散體相變化研究”,國立台灣科技大學機械工程研究所,碩士論文(2007) 。
    23.H.Baker, “ASM Handbook V.3 Alloy Phase Diagrams”. (1992) .
    24.P.Villars, A. Prince, and H. Okamoto, “Handbook of ternary alloy phase diagrams”. (1995) .
    25.J.Janovec, M. Svoboda, A. Vyrostkova, A. Kroupa, Met. Sci. A, 402, 288 (2005).
    26.K.H. Kuo, C.L. Jia, Acta Metall., 33, No.6, 991 (1985).
    27.P.R. Howell, J.V. Bee, R.W. K. Honeycombe, Metall. Trans. A, 10A, 1213 (1979).
    28.M.H. Lewis, B.Hattersley, Acta Metall., 13, 1159 (1965).
    29.L.K. Singhal, J.W. Martin, Acta Metall., 16, 1159 (1968).
    30.B.Weiss, R. Stickler, Metall. Trans., 3, 851 (1972).
    31.J.B. Lupton, S. Murphy, J.H. Woodhead, Metall. Trans., 3, 2923 (1972).
    32.K.Campbell, R.W.K. Honeycombe, Metal Sci., 8, 197 (1974).
    33.R.W.K. Honeycombe, R.F. Mehl, Metall. Trans. A, 7A, 915 (1976).
    34.A. Boeuf, R. Caciuffo, S. Crico, Mat. Letters, 2, No.1, 49 (1983).
    35.H.J. Goldschmidt, D. Sc., F. Inst. P., F.I.M. “Interstitial Alloys”.
    36.W.F. Smith, “Structure and Properties of Engineering Alloys” (1993) .
    37.M.C. Li, H. Chang, P.W. Kao, Materials Chemistry and Physics, 59 96 (1999) .
    38.K.H. Han, J.C. Yoon, W.K. Choo, Scripta Metall., 20, 33 (1986) .
    39.Y.G. Kim, Y.S. Park and J.K. Han, Metall. Trans. A, 16, 1689 (1985).
    40.Y.G. Kim, J.K. Han and E.W. Lee, Metall. Trans. A, 17, 2097 (1986).
    41.D.B. Williams and C.B. Carter, “Transmission Electron Microscopy”, Plenum (1996).
    42.陳力俊等,“材料電子顯微鏡學”,國科會精儀中心 (1997)。

    無法下載圖示 全文公開日期 2015/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE