簡易檢索 / 詳目顯示

研究生: 廖英凱
Ying-Kai Liao
論文名稱: Mach-Zehnder干涉於表面電漿矽線波導
Mach-Zehnder Interfere Based Silicon-wire Surface Plasmons
指導教授: 徐世祥
Shih-hsiang Hsu
口試委員: 劉信孚
Hsin-fu Liu
張哲菖
Che-chang Chang
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 矽線波導表面電漿馬赫詹德干涉混合式電漿波導
外文關鍵詞: silicon-wire, surface plasmonic, Mach Zehnder interferometer
相關次數: 點閱:208下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1969年,貝爾實驗室S. E. Miller提出光積體電路(Optical Integrated Circuit)的概念,而1970年代,各種波導材料如聚合物、玻璃、LiNbO3、半導體及其製程技術,相繼被提出且廣泛研究。光積體電路的發展主要可分為三代,第一代為傳統光學;第二代稱為微光學;第三代稱為積體光學時代,然而絕緣層上覆矽(Silicon-on-insulator, SOI)是近年來廣泛應用在高速且低功耗電子元件,因為其具有高折射率係數且可大幅縮小元件體積,同時製作方式與互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor, CMOS)製程相容,有利於光電積體電路的發展。
    論文中利用波導耦合來產生表面電漿效果之生物感測器,將使用商業軟體Photon Design的OmniSim以FDTD (Finite Difference Time Domain)和FIMMWAVE的FDM (Finite Difference Method)進行數值模擬表面電漿波導之金屬厚度、長度、波導寬度對表面電漿現象之分析。
    表面電漿共振分別有三種耦合方式:光柵耦合、波導耦合與稜鏡耦合,論文利用矽波導耦合來產生表面電漿效果之生物感測器,我們的主要是在波導上面與側面上覆蓋一層金屬,當光傳遞到金屬時,將會在矽波導與金屬交接面產生一表面電漿波以及金屬與介質待測物交接面產生另一表面電漿波,當此兩表面電漿波至金屬層尾端時,再回傳至矽波導層,此種機制等同於一馬克詹德干涉儀(Mach-Zehnder Interferometer),與傳統矽線波導表面電漿波不同的是我們將金屬完全包覆在感測區上的矽波導,而不是一般常見的將金屬覆蓋在上方,靈敏度模擬結果可達2891 nm/Refractive Index Unit (RIU), 本論文亦會深入討論此新結構靈敏度增加的原因. 然而以上表面電漿波的矽線波導寬度為240 nm, 因為國家奈米元件實驗室(National Nano Device Laboratories, NDL)黃光製程線寬的限定,我們將使用寬度450 nm以及3 µm,來驗證我們的模擬結果。
    寬頻馬克-詹德方向耦合器是由一段短的延遲長度之非耦合區,在前端與後端加上方向耦合器所組成,在此論文中, 我們提出表面電漿干涉的概念來取代非耦合區,除了可大幅減小元件尺寸, 更可涵蓋S至L-Band間, 50:50、70:30、90:10三種分光比之寬頻分光器。


    In 1969 S. E. Miller in Bell Labs proposed the concept of optical integrated circuits, which promoted extensive study on a variety of waveguide materials such as polymers, glass, and LiNbO3 in the 1970s,. The development of optical integrated circuits can be divided into three generations. The first is a conventional optics, the second is known as micro-optics and the third generation of this era is named as integrated photonics. However, silicon-on-insulator (SOI) is widely used in recent years for the high-speed and low-power electronic components. Because silicon owns a high refractive index besides the complementary metal oxide semiconductor (CMOS) compatible process, SOI based devices can significantly be reduced to a small foot print and becomes a popular platform in the optoelectronic integrated circuit developments.
    In this thesis the biosensor is implemented using the waveguide coupled surface plasmon. The functions of FDTD (Finite Difference Time Domain) and FDM (Finite Difference Method), built in the commercial software of OmniSim and FIMMWAVE, are taken to simulate the surface plasmon effect under the variation of the metal thickness, plasma waveguide length and width.
    There are three coupling approaches in surface plasmons: grating coupler, optical waveguide and prism. In this thesis a silicon based optical waveguide is utilized as the biological sensors through surface plasma polaritons. The main structure is to implement the surrounding metals on top of the silicon-wire waveguide. When the optical mode is interfered with the metal, a surface plasma wave will be induced in the interface between the metal and dielectric film, same as the other metal interfaces. At the end of the surface plasmon region, all the interference will be joined together and coupled to the silicon-wire. This mechanism is equivalent to the function of Mach Zehnder interferometer (MZI). The simulation results are showing that the sensitivity is up to 2891 nm/Refractive Index Unit (RIU) and the details will be further discussed. Due to the lithography limitation from the National Nano Device Laboratories(NDL), the silicon-wire width is chosen 450 nm and 3 μm for simulation verification.
    A broadband Mach-Zehnder directional coupler (MZDC) is constructed by two directional couplers connected through a short delayed length. The new concept in this thesis is to use the surface plasmon interference, hybrid plasmon waveguide (HPW), with the short length to replace the decoupled region of MZDC. The HPW based MZDC could demonstrate the arbitrary splitting ratios, such as 50:50, 70:30, and 90:10, in the S and L bands.

    摘要 I ABSTRACT III 致謝 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1簡介 1 1.2 研究動機 1 1.3 論文架構 2 第二章 矽線波導介紹 3 2.1 單多模條件 3 2.2 雙折射效應 5 2.3 波導傳播損耗 6 第三章干涉 15 3.1 低同調光學干涉 15 3.1.1 馬赫-詹德干涉儀 15 3.1.2 低同調光干涉理論 17 3.2系統穩定探討 22 第四章 表面電漿 26 4.1.表面電漿 26 4.1.1表面電漿理論 27 4.1.2電磁波的色散關係式 29 4.2 表面電漿之激發條件 34 4.2.1 稜鏡耦合 35 4.2.2 光波導耦合 36 4.2.3 光柵耦合 36 4.3 文獻回顧 37 4.4 表面電漿波導之模擬 40 4.5 表面電漿干涉於波導模擬與設計 41 4.6 混合式電漿波導 57 第五章實驗與量測 66 5.1 表面電漿干涉於波導量測 66 第六章結論與展望 76 6.1 結論 76 參考文獻 77

    [1] R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
    [2] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section," Journal of Lightwave Technology, vol. 23, no. 6, pp. 2103-2111, 2005.
    [3] T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
    [4] K. W. Ang and G. Q. L. Patrick, "Si charge avalanche enhances APD sensitivity beyond 100 GHz," Laser Focus World, vol. 46, no. 8, 2010.
    [5] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. T Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328-1330, 2004.
    [6] Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090-1101, 2002.
    [7] A. Sakai, H. Go, and T. Baba, "Sharply bent optical waveguide silicon-on-insulator substrate," Symposium on Integrated Optics, vol. 4283, pp. 610-618, 2001.
    [8] E. Marcatili, "Bends in optical dielectric guides," Bell System Technical Journal, vol. 48, no. 25, pp. 2103-2132, 1969.
    [9] M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE Journal of Quantum Electronics, vol. 11, no. 2, pp. 75-83, 1975.
    [10] Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Optics Express, vol. 12, no. 8, pp. 1622-1631, 2004.
    [11] V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, "Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides," Journal of Lightwave Technology, vol. 15, no. 6, pp. 990-997, 1997.
    [12] K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Applied Physics Letters, vol. 77, no. 11, pp. 1617-1619, 2000.
    [13] D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell System Technical Journal, vol. 48, pp. 3187-3215, 1969.
    [14] F. Payne and J. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides," Optical and Quantum Electronics, vol. 26, pp. 977-986, 1994.
    [15] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1661-1663, 2004.
    [16] T. A. Carriere, et al, “Measurement of waveguide birefringence using ring resonator, ” IEEE of Photonics Technology Letters, vol.16, no.4, 2004.
    [17] 蘇昱豪,光環型共振腔之干涉式生醫感測,國立台灣科技大學,台北,2012.
    [18] G. T. Reed and A. P. Knights, ”Silicon Photonics an Introduction, ” John Wiley and Sons, Ltd, 2004.
    [19] K. Takada, et al, “Optical low coherence method for characterizing silica-based arrayed-waveguide grating multiplexer, ” Journal of Lightwave Technology, vol. 14, pp. 1677-1689, 1996.
    [20] R. F. Oulton1, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation’’, Nature Photonics, 2, pp. 496 – 500, 2008.
    [21] I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap’’, Optical Express, 18(1), pp. 348-363, 2010.
    [22] 廖高崧,金屬-介質-金屬波導結構的表面電漿分光器之研究,碩士論文,國立交通大學光電工程學系碩士班(2013)
    [23] 郭建銘,效能增強混合式表面電漿子波導管之設計與分析,碩士論文,國立清華大學工程系統科學系(2013)
    [24] 林君豪,以全向量虛軸有限元素波束傳播法分析數種表面電漿波導結構的模態特性,碩士論文,國立臺灣大學電機資訊學院光電工程學(2014)
    [25] 洪仕熹,發展高階有限差分法與邊界匹配條件分析介電質與金屬光波導結構,碩士論文,國立高雄應用科技大學電子工程系(2012)
    [26] S. H. Hsu, J.-C. Hsu, and S.-C. Chen, “Interferometric fiber strain sensor using fiber Bragg grating based optical ruler,” 2013/June, CLEO, p. JW2A.72, San Jose, California, USA, 2013.
    [27] M. Z. Alam, J. N. Caspers, J. S. Aitchison, and M. Mojahedi , “Compact low loss and broadband hybrid plasmonic directional coupler”, Optics Express, 21(13), pp. 16029-16034, 2013.
    [28] J. Homola, J. hyrok, M. Skalsw, J. Hradilova, P. KoltiovB, “A Surface Plasmon Resonance Based Integrated Optical Sensor," Sensors and Actuators B: Chemical, 38, pp. 286-290, 1997.
    [29] 吳民耀,劉威志,"表面電漿子理論與模擬",物理雙月刊,廿八卷二期, pp. 486-496, 2006.
    [30] 邱國斌,蔡定平,"金屬表面電漿簡介",物理雙月刊,廿八卷二期, pp. 472-485, 2006.
    [31] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.
    [32] J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, J. Schrofel, “Surface Plasmon Resonance Biosensor Based on Integrated Optical Waveguide, “Sensors and Actuators B, 73, pp. 8-12, 2001.
    [33] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, “Surface Plasmon Interferometer in Silicon-on-insulator: Novel Concept for an Integrated Biosensor, ” Optics Express, 14, pp. 7063-7072, 2006.
    [34] P. Debackere, R. Baets, and P. Bienstman, "Bulk Sensing Experiments using a Surface-Plasmon Interferometer," Optics Letters, 34, pp. 2858-2860, 2009.
    [35] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, “Surface Plasmon Interferometer in Silicon-On-Insulator: Novel Concept for an Integrated Biosensor: Reply, “Optic Express, 15, pp. 13651-13653, 2009.
    [36] R. Levy, S. Ruschin, “SPR Waveguide Sensor based on Transition," Sensors and Actuators B: Chemical, 124, pp. 459–465, 2007.
    [37] B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive Index Sensor based on Hybrid Coupler with Short-Range Surface Plasmon Polariton and Dielectric Waveguide, “Applied Physics Letters, 100, p. 111108, 2012.
    [38] R. Levy, S. Ruschin, “SPR Waveguide Sensor based on Combined Sensing Phase and Amplitude Changes, “SPIE, 6475, p.374, 2007.
    [39] R. Levy, S. Ruschin, “Design of a Single-Channel Modal Interferometer Waveguide Sensor," IEEE Sensors Journal, 9(2), pp. 146-153, 2009.
    [40] B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive Index Sensor for Ultra-thin Layer based on SPP-Dielectric Hybrid Coupler," CLEO, p. JTh2A.97, 2012.
    [41] B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, Y. Huang, “Integrated Refractive Index Sensor based on Hybrid Coupler with Short Range Surface Plasmon Polariton and Dielectric Waveguide," Applied Physics Letters, 102(061109), pp. 1-4, 2013.
    [42] Y. S. Chu, W. H. Hsu, C. W. Lin, W. S. Wang, “Surface Plasmon Resonance Sensors using Silica-On-Silicon Optical Waveguides," Microwave and Optical Technology Letters, 48(5), pp. 955-957, 2005.
    [43] X. F. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optics Letters, Vol. 34, pp. 392-394, 2009.
    [44] Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing, ACS NANO, Vol. 5, No. 12, 2011.
    [45] B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, "Optimized Film Thickness for Maximum Evanescent Filed Enhancement of a Bimetallic Film Surface Plasmon Resonance Biosensor," Sensors and Actuators B: Chemical, 114, pp. 1028-1034, 2006.
    [46] K. Q. Le and P. Bienstman, “Enhanced Sensitivity of Silicon-On-Insulator Surface Plasmon Interferometer With Additional Silicon Layer,” IEEE Photonics Journal, Vol. 3, No. 3, 2011.

    QR CODE