簡易檢索 / 詳目顯示

研究生: 甘碩堯
Shuo-yao Kan
論文名稱: 次微米矽線波導光調制器之研製
SubMicron Optical Modulator Study on Silicon Wire Waveguide
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 葉秉慧
Ping-Hui Yeh
莊敏宏
Miin-Horng Juang
張勝良
Sheng-Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 光調制器矽線波導光電積體電路絕緣層上覆矽次微米製程
外文關鍵詞: Optical Modulator, Silicon Wire Waveguide, Optoelectronic Integrated Circuit, Silicon-on-Insulator, Submicron CMOS Processing
相關次數: 點閱:301下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先進通訊系統,光電積體電路扮演決定性角色,達到面積小、高效率、資料傳輸容量大增,對於光電積體電路領域,重要光電元件例如光調制器、分光器、濾波器、可調式光衰減器、光開關,都使用絕緣層上覆矽(SOI)為基板,與CMOS標準製程相容,研發次微米製程,製程極限縮小到線寬0.4 μm彎曲半徑36 μm,長遠目標為在絕緣層上覆矽基板,發展高密度光電積體電路,期望降底成本、減少面積與重量,以達到未來光學元件和積體電路的單石積成(Monolithic Integration)。
    在光通訊系統,傳送資訊的資料量、聲音、和影像,可以藉由矽光電調制器由電領域轉換成光領域傳送到目的。本論文設計和研製馬克-詹德干涉儀在絕緣層上覆矽晶圓上,干涉儀的一端製作p-i-n二極體,在p-i-n二極體上加金屬電極,藉由順偏壓產生擴散電流,逆偏壓產生漂移電流,影響載子在p-i-n二極體的動態分佈,達到改變矽光電調制器,調制效率Vπ、以及速度響應。
    由於次微米元件面積較小,所以在新竹國家奈米元件實驗室(National Nano Device Laboratories)研發CMOS標準製程與光學微影技術,在台灣大學奈米機電系統研究中心研發晶圓切割技術,調制器的設計、研磨製程等所有技術開發均在台灣科技大學光電積體電路實驗室研發。光調制器共使用六道光罩來定義圖形,使用I-Line Stepper完成黃光製程。
    矽線波導線寬0.5 μm蝕刻深度0.21 μm,波導傳輸損耗10.14 dB/cm,量測元件p-i-n二極體IV、CV特性曲線,可推測順偏壓形式Vπ:0.82 V,逆偏壓形式Vπ:8 V,推測速度響應順偏壓1.7 GHz,逆偏壓形式62 GHz。


    In the prevailing communication system, optoelectronic integrated circuit (OEIC) plays a crucial role to attain the compact size, high efficiency, and large transmission data capacity. Among OEIC technologies, a silicon-on-insulator (SOI) platform, compatible with the standard manufacture process of complementary metal oxide semiconductor processing (CMOS), was successfully demonstrated on the key photonic components, such as optical modulator, power splitter, wavelength filter, variable optical attenuator, and optical switch. With the favor of the submicron SOI wafer quality improvement for CMOS processing, a critical dimension and bending radius of a silicon wire waveguide can be further reduced to 0.4μm and 36μm, respectively. Our ultimate goal is to develop highly integrated photonic and electronic circuitry on a SOI chip for size, weight, and cost reduction in traditional optical systems for future monolithic integration between photonics and electronics.
    In the optical telecommunications, the information of data, voice, and video can be encoded into the optical domain by optical modulator and transmitted to the destination. In this dissertation, the Mach-Zehnder interferometer (MZI) was designed and fabricated on SOI platforms. Then a p-i-n diode coated with metal pads on one arm of MZI was generating diffusion and drift currents, respectively, by forward and reverse biases, which dynamically dominate carriers distribution in a diode and furthermore illustrate the modulator efficiency Vπand speed response.
    Due to the small footprint in the submicron dimension, the photolithography was extensively developed at National Nano Device Laboratories (NDL) in Hsinchu city for full compatibility with CMOS. The wafer dicing was accomplished in the Nano-Electro-Mechanical-Systems Research Center of National Taiwan University. The research on the performance design, characterization, and the back-end polishing processing were all developed in the OEIC group of National Taiwan University of Science and Technology. Six layers of photomasks were utilized to define patterns using I-Line stepper for delivering a complete set of optical modulator.
    The silicon wire propagation loss was demonstrated as 10.14 dB/cm on a waveguide width of 0.5μm and etch depth of 0.21μm. From the experimental data of IV and CV curves, the Vπ can be derived to be 0.82 V and 8 V, respectively, for forward and reverse biases. Finally the speed response of our silicon wire optical modulator can also be estimated as1.7 GHz in forward bias and improved to be 62 GHz in reverse bias.

    第1章 緒論1 1.1 光電積體電路簡介1 1.2 光調制器簡介2 1.2.1 III-V族半導體之電吸收調制器(EAM)3 1.2.2鈮酸鋰電光調制器3 1.2.3矽光電調制器4 1.3 論文架構5 第2章 光調制器架構原理6 2.1 調制原理6 2.1.1 偏壓形式7 2.1.2 載子復合生命期10 2.2 光調制器架構13 2.2.1 多模干涉儀(MMI)13 2.2.2 耦和效應13 2.3 矽光電調制器文獻回顧15 2.3.1 文獻回顧(載子生命期影響調制器效能)15 2.3.2 文獻回顧(逆偏壓形式光調制器)17 2.3.3 文獻回顧(熱光效應調制器)18 2.3.4 文獻回顧(逆偏壓形式調制器)18 2.3.5 文獻回顧(Intel光調制器)19 2.4.8 文獻回顧(光學元件和IC積體化)22 2.5 總結與比較23 2.5.1 架構總結23 2.5.2 3dB頻率24 2.5.3 特性分析24 第3章 光調制器設計27 3.1 離子佈植設計27 3.1.1 離子佈植簡介27 3.1.2 淺接面製作27 3.1.3 離子通道效應28 3.1.4 模擬離子佈植分佈29 3.1.5 退火(Annealing)30 3.1.6 摻雜分佈對元件的影響35 3.2 蝕刻參數設計36 3.2.1 複晶矽-活性離子蝕刻機(Poly-Si RIE)機台介紹37 3.2.2 電極材料和表面粗操度的關係37 3.2.3 負載效應39 3.2.4 遮罩層材料39 3.2.5 蝕刻氣體 混和機制39 3.2.6 非等向性42 3.2.7 壓力大小42 3.2.8 RF功率43 3.2.9 蝕刻選擇比&蝕刻率43 3.2.10 實驗結果44 3.3 平面波導設計45 3.3.1 微帶線(Microstrip)46 3.3.2 電極的製程48 3.3.3 銅製程49 3.3.4 金屬矽化物49 3.4 光調制器損耗49 3.5 光調制器參數設計54 第4章 製程整合55 4.1 光調制器製作步驟55 第5章 量測結果65 5.1 光波導插入損耗(Insertion Loss)65 5.2 IV和CV特性曲線66 5.3 光調制器相位計算77 5.4 頻率響應計算80 5.5 光調制器量測81 第6章 結論與未來展望83 參考文獻 88

    [1] C. E. Png, G. T. Reed, W. R. Headley, K. P. Homewood, A. Liu, M. Paniccia, R. M. H. Atta,G. Ensell, A. G. R. Evans, D. Hak and O. Cohen, “Design and experimental results of small silicon-based optical modulators,” Proceedings of SPIE, Vol. 5356, pp. 44-55, 2004.
    [2] R. R. Whiteman, A. P. Knights, D. George, I. E. Day, A. Vonsovici,
    A. A. House, G. F. Hopper and M. Asghari. “Recent progress in the design, simulation and fabrication of small cross-section silicon-on-insulator VOAs”
    Proceedings of SPIE Vol. 4997 (2003) © 2003 SPIE
    [3] Ansheng Liu, Richard Jones, Ling Liao, Dean Samara-Rubio,Doron Rubin, Oded Cohen, Remus Nicolaescu and Mario Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” NATURE VOL. 427 pp. 615-618, FEBRUARY 2004.
    [4] F. Y. Gardes, G. T. Reed, N.G. Emerson, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” OPTICS EXPRESS, Vol. 13, pp. 8845-8854, October 2005
    [5] Fuwan Gan and Franz X. Kärtner, “Low Insertion Loss, High-Speed Silicon Electro-Optic Modulator Design,” OSA/IPRA Vol. 230, pp. 1-3, 2006.
    [6] Graham T.Reed “Silicon Photonics THE STATE OF THE ART”
    John Wiley & Sons,Ltd
    [7] Fuwan Gan and Franz X. Kärtner, “High-Speed Silicon Electrooptic Modulator Design,“ IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, pp. 1007-1009, MAY 2005.
    [8] Dr. W. S. Ring “Silicon Photonics:Challenges and Future” 2007 OIDA
    [9] Andrew Huang, Cary Gunn, Guo-Liang Li, Yi Liang, Sina Mirsaidi, Adithyaram Narasimha and Thierry Pinguet, “A 10Gb/s Photonic Modulator and WDM MUX/DEMUX Integrated with Electronics in 0.13um SOI CMOS,” ISSCC OPTICAL COMMUNICATION, VOL. 13, pp. 79-87, 2006.
    [10] Stephen R.Giguere、Lionel Friedman、Richard A. Soref and Joseph P.Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys, Vol. 66,pp. 1990.
    [11] S. Stepanov、S. Ruschin, “Phase and amplitude modulation of light by light in silicon-on-insulator waveguides,” ELECTRONICS LETTERS, Vol. 41, pp. 1-2, 2005.
    [12]Donald A.Neamen 、譯者:李世鴻 “半導體物理及元件”
    [13]F.E.Doany、D. Grischkowsky、C.-C.Chi “Carrier lifetime versus ion mplantation dose in silicon on sapphire,” Appl. Phys. Lett,Vol. 50, pp. 460-462, 1987.
    [14] Mark J Kerr and Andres Cuevas ” Very low bulk and surface recombination
    in oxidized silicon wafers,” Semicond. Sci. Technol, Vol. 17, pp. 35-38, 2002.
    [15] C.E. Png, G.T. Reed, R.M.H. Atta, G. Ensell, A.G.R. Evans, ”Development of small Silicon modulators in Silicon-On-Insulator,” Proceedings of SPIE, Vol. 4997, pp.35-38,2003.
    [16] Ansheng Liu, Ling Liao, Doron Rubin, Hat Nguyen, Berkehan Ciftcioglu, Yoel Chetrit, Nahum Izhaky, and Mario Paniccia, ”High-speed optical modulation based on carrier depletion in a silicon waveguide,” OPTICS EXPRESS, Vol. 15, pp. 660-668, 2007.
    [17] Juthika Basak, Ling Liao, Ansheng Liu, Doron Rubin, Yoel Chetrit, Hat Nguyen,Dean Samara-Rubio, Rami Cohen, Nahum Izhaky, and Mario Paniccia, “Developments in Gigascale Silicon Optical Modulators Using Free Carrier Dispersion Mechanisms,” Optical Technologies, Vol. 1155, pp. 1-10, 2008.
    [18] Ching Eng Png, Seong Phun Chan, Soon Thor Lim, and Graham T. Reed , “Optical Phase Modulators for MHz and GHz Modulation in Silicon-On-Insulator (SOI),” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 22, pp. 1573-1582, JUNE 2004.
    [19]原著:施敏、譯:黃調元 “半導體元件物理與製作技術”
    [20] Zhi-Yong Li,* Dan-Xia Xu, W. Ross McKinnon, Siegfried Janz, Jens H. Schmid, Pavel Cheben and Jin-Zhong Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” OPTICS EXPRESS, Vol. 17 pp. 15947-15958, August 2009.
    [21] F. Y. Gardes, K. L. Tsakmakidis, D. Thomson, G. T. Reed, G. Z. Mashanovich, O. Hess, and D. Avitabile, “Micrometer size polarization independent depletion-type photonic modulator in Silicon On Insulator,” Opt.Express, Vol.15, pp. 5879–5884 (2007).
    [22] D. W. Zheng, D. Z. Feng, G. Gutierrez, and T. Smith, “Design of a 10 GHz Silicon Modulator Based on a 0.25μm CMOS Process - A Silicon Photonic Approach,” Proc. SPIE, VoL. 6125, pp. 10-20, 2006.
    [23] T. Pinguet, V. Sadagopan, A. Mekis, B. Analui, D. Kucharski, and S. Gloeckner, “A 1550 nm,10 Gbps optical modulator with integrated driver in 130 nm CMOS,“ IEEE International Conference on Group IV Photonics, pp. 186-188, 2007.
    [24] D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli,and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express, Vol. 14, pp. 10838–10843, 2006
    [25] D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express, Vol. 16, pp. 334–339, 2008
    [26] Richard A. Soref, Joachim Schmidtchen, and Klaus Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SO2,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VoL. 27, pp. 239-242, AUGUST 1991.
    [27] Seong Phun Chan, Ching Eng Png, Soon Thor Lim, Graham T. Reed, and Vittorio M. N. Passaro, “Single-Mode and olarization-Independent Silicon-on-Insulator Waveguides With Small Cross Section,“ JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 23, 2005.
    [28] Timo Aalto, ” Microphotonic silicon waveguide components,” (ISBN:951-38-6422-7), 2004.
    [29] Yurii A. Vlasov and Sharee J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” OPTICS EXPRESS, Vol. 12, pp. 8-14, 2004.
    [30] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides,” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 16, pp. 92-99, JULY 2004.
    [31] M. H. Juang, F. S. Wan, H. W. Liu, K. L. Cheng, and H. C. Cheng, “Influence of implant condition on the transient-enhanced diffusion of ion-implanted boron in silicon,” J. Appl. Phys, Vol. 6, pp. 1-10, 1992.
    [32] Graham T. Reed, Andrew P. Knight “Silicon Photonics An Introduction”
    John Wiley&Sons, Ltd
    [33] C. T. Lin, M. H. Juang, S. T. Jan, P. F. Chou, and H. C. Cheng, “Formation of shallow junctions by implantation into thin polyctystalline Si films,” J. Appl. Phys. Vol. 76, 1994.
    [34] S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos, “Highly anisotropic silicon reactive ion etching for nanofabrication using mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. VOL. 15(3), pp. 640-645, May/Jun 1997.
    [35] Rob Legtenberg, Henri Jansen, Meint de Boer, and Miko Elwenspoek, “Anisotrapic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures,” J. Electrochem. Sac, Vol. 142, No. 6, June 1995.
    [36] K. K. Bourdelle , A. T. Fiory, H.-J. L. Gossmann, and S. P. McCoy, “Implant Dose and Spike Anneal Temperature Relationships,” Materials Research Society, 2001.
    [37] G. L. Li, T. G. B. Mason, and P. K. L. Yu, “Analysis of Segmented Traveling-Wave Optical Modulators,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 22, NO. 7, pp. 1789-1796, JULY 2004.
    [38] David M. Pozar “Microwave Engineering”
    [39] 莊達人 “VLSI製造技術” 高立圖書有限公司
    [40] Richard Soref “The Past, Present, and Future of Silicon Photonics” 2006 IEEE
    [41] Po Dong, Shirong Liao, Dazeng Feng, Hong Liang, Dawei Zheng, Roshanak
    Shafiiha, Cheng-Chih Kung, Wei Qian, Guoliang Li, Xuezhe Zheng, Ashok V.
    Krishnamoorthy, and Mehdi Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” OPTICS EXPRESS, Vol. 17, 2009.
    [42]主編:楊淳良、趙亮琳 作者:李楊漢、許立根、譚昌文、洪鴻文、曹士林 "光纖通信網路"五南.
    [43] H. C. Huang and T. C. Lo, “simulation and analysis of silicon electro optic modulators utilizing the carrier dispersion effect and impact ionization mechanism,” J. Appl. Phys, Vol. 3, pp. 1521-1528, August 1993.

    無法下載圖示 全文公開日期 2015/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2015/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE