簡易檢索 / 詳目顯示

研究生: 陳昆達
Kuen-da Chen
論文名稱: 無鉛銲料與Au/Ni/SUS304基材界面反應之研究
The study of interfacial reactions between lead-free solders on Au/Ni/SUS304 Multilayer substrate.
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 朱瑾
Jinn P. Chu
鄭偉鈞
Wei-Chun Cheng
吳子嘉
Tzu-Chia Wu
陳志銘
Chih-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 100
中文關鍵詞: 無鉛銲料介金屬相反應活化能
外文關鍵詞: lead-free, stainless steel, intermetallic compound, reaction activation energy
相關次數: 點閱:354下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究選用五種當前廣泛被使用的無鉛銲料,Sn、Sn-3.0Ag-0.5Cu、Sn-0.7Cu、Sn-58Bi、Sn-9Zn,與Au/Ni/SUS304基材於反應溫度240、255、270℃,分別進行不同反應時間1-5小時的液/固界面反應,探討其界面反應之後介金屬相種類、反應機制、反應動力學、成長速率常數與反應活化能。

實驗結果顯示,Sn/Au/Ni/SUS304以及Sn-58Bi/Au/Ni/SUS304反應偶中,界面處的介金屬相主要為Ni3Sn4相生成,其界面處Ni層依然保留完整的阻障。Sn-3.0Ag-0.5Cu/Au/Ni/SUS304反應偶中,因銲料中Cu濃度為0.5 wt.%,界面處的介金屬相主要為(Cu,Ni)6Sn5相與(Ni,Cu)3Sn4相生成;Sn-0.7Cu/Au/Ni/SUS304反應偶中,因銲料中Cu濃度為0.7 wt.%,界面處的介金屬相主要為(Cu,Ni)6Sn5相。隨著反應時間增加溫度上升,其界面處Ni層消耗殆盡,同樣觀察到界面處發生大規模剝離現象。不同的是SAC/Au/Ni/SUS304反應偶,因界面處有未剝離的(Ni,Cu)3Sn4相,導致銲料無法與SUS304基材界面反應;而SC/Au/Ni/SUS304反應偶,銲料與SUS304基材界面反應,生成另一介金屬相為FeSn2相。

Sn-9Zn/Au/Ni/SUS304反應偶中,Zn原子活性較高且容易在界面上聚集,故容易與基材上的Ni層反應生成Ni5Zn21相。同樣的隨著時間拉長及溫度上升,Ni5Zn21相成長Ni層消耗,其Ni層依然保留完整阻障。四個反應偶的介金屬相總成長厚度與反應時間呈現拋物線關係,故反應機制亦應為擴散控制所主導。


This study investigates the interfacial reactions between five kinds of lead-free solders, Sn, Sn-3.0Ag-0.5Cu (wt.%), Sn-0.7 wt.%Cu (SC), Sn-58 wt.%Bi (SB) and Sn-9 wt.%Zn (SZ), and Au/Ni/SUS 304 substrates. The reaction temperatures were at 240, 255 and 270℃, and the reactions times were varied between 1 to 5 hours. The surface morphology is examined by optical-microscopy (OM), scanning electron microscopy (SEM). The intermetallic compound (IMC) composition was determined by SEM with energy dispersion spectrometer (EDS) and electron probe micro-analyzer (EPMA). Then, the composition data compared with related phase diagrams to indentify the IMC formed at the interface.

According to experimental results, in the Sn/Au//Ni/SUS304 couple, only one oval-type and polyhedron-type IMC layer was found at the Sn/Au/Ni/SUS304 interface. It was the Ni3Sn4 phase of Sn-41.1 at.% Ni. only one IMC layer with composition of Sn-31.7Cu-23.3Ni (at.%) was found in the SC/Au/Ni/SUS304 couples. It should be the (Cu, Ni)6Sn5 phase with the hexagonal-type structure. When the Ni layer was completely consumed, the massive spalling of the (Cu, Ni)6Sn5 phase was found in the solder. When the (Cu, Ni)6Sn5 phase was spread over the interface, the SUS304 substrate surface could directly contact the SC solder. Thus, Sn atoms reacted with the SUS 304. The thin layer IMC was formed at the interface, its composition was Sn-25.7 at.% Fe and it should be the FeSn2 phase with the platy-type layer.

In the Sn-3.0Ag-0.5Cu/ Au//Ni/SUS304 couples, there were two IMCs such as (Cu,Ni)6Sn5 phase and (Ni,Cu)3Sn4 phase at the interface. It should be the (Cu, Ni)6Sn5 phase with the hexagonal-type structure. And (Ni,Cu)3Sn4 phase with the ovall-type structure. When the Ni layer was completely consumed, the massive spalling of the IMCs layer was found in the solder. But SUS304 substrate surface could not directly contact the SC solder, beause of (Ni,Cu)3Sn4 phase adherence at interface.

In the SB/Au//Ni/SUS304 couple, only one needle-type IMC layer was found at the SB/Au/Ni/SUS304 interface. It was the Ni3Sn4 phase of Sn-38.3 at.% Ni. The thickness of the Ni3Sn4 layer increased with the time. It reveals that more Ni atoms dissolve into the molten solder and react with Sn atoms to form the Ni3Sn4 phase at the interface. In the SZ/Au//Ni/SUS 304 couple, one pillar-type IMC layer of Zn-18.7 at.% Ni was found and it should be the Ni5Zn21 phase. The thickness of the Ni5Zn21 phase increased with the time. Since the Zn atoms easily penetrated and segregated toward the substrates reacts to form the Ni5Zn21 phase at the interface.

目錄 中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 前言 1 第二章 文獻回顧 3 2-1 電子構裝 3 2-2 無鉛銲料簡介 4 2-3 無鉛銲料之性質 6 2-3-1 純錫 6 2-3-2 錫-銀-銅 7 2-3-3 錫-銅 9 2-3-4 錫-鉍 10 2-3-5 錫-鋅 11 2-4 高溫無鉛銲料 12 2-5 助銲劑應用 13 2-6 界面反應動力學 15 2-6-1 界面反應理論 15 2-6-2擴散控制反應與界面控制反應 15 2-7 界面反應相關文獻 19 2-7-1 純錫/鎳層之界面反應 19 2-7-2 錫-銀-銅/鎳層之界面反應 21 2-7-3 錫-銅/鎳層之界面反應 21 2-7-4 錫-鉍/鎳層之界面反應 23 2-7-5 錫-鋅/鎳層之界面反應 23 2-7-6 無鉛銲料/不銹鋼基材之界面反應 26 第三章 實驗方法 30 3-1 基材Au/Ni/SUS304製備 30 3-2 銲料製備 31 3-3 反應偶製備 31 3-4 界面觀察與分析 33 第四章 結果與討論 37 4-1 Sn銲料與Au/Ni/SUS304基材反應偶 37 4-1-1 Sn/Au/Ni/SUS304反應偶之界面反應 37 4-1-2 Sn/Au/Ni/SUS304反應偶之蝕刻形態 39 4-2 Sn-3.0Ag-0.5Cu銲料與Au/Ni/SUS304基材反應偶 41 4-2-1 Sn-3.0Ag-0.5Cu/Au/Ni/SUS304反應偶之界面反應 41 4-2-2 Sn-3.0Ag-0.5Cu/Au/Ni/SUS304反應偶之蝕刻形態 45 4-3 Sn-0.7Cu銲料與Au/Ni/SUS304基材反應偶 51 4-3-1 Sn-0.7Cu/Au/Ni/SUS304反應偶之界面反應 51 4-3-2 Sn-0.7Cu /Au/Ni/SUS304界面之蝕刻形態 57 4-4 Sn-58Bi銲料與Au/Ni/SUS304基材反應偶 69 4-4-1 Sn-58Bi/Au/Ni/SUS304反應偶之界面反應 69 4-4-2 Sn-58Bi/Au/Ni/SUS304反應偶之蝕刻形態 75 4-5 Sn-9Zn銲料與Au/Ni/SUS304基材反應偶 77 4-5-1 Sn-9Zn/Au/Ni/SUS304反應偶之界面反應 77 4-5-2 Sn-9Zn/Au/Ni/SUS304反應偶之蝕刻形態 83 4-6 Solders/Au/Ni/SUS304 反應偶之界面反應機制與動力學 87 第五章 結論 91 第六章 參考文獻 94

1. “WEEE Regulations”EU-Directive 96/EC (2002)
2. “RoHS Regulations”EU-Directive 95/EC (2002)
3. J. W. Yoon, S. W. Kim, S. B. Jung, “Effect of reflow time on interfacial reaction and shear strength of Sn-0.7Cu solder Cu and electroless Ni-P BGA joints” , Journal of Alloys and Compounds, vol. 385, pp. 192-198 (2004)
4. J. W. Yoon, S. W. Kim, S. B. Jung, “Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn-Cu/Ni solder joint”, Journal of Alloys and Compounds, vol. 415, pp. 56-61 (2006)
5. J. W. Yoon, S. W. Kim, S. B. Jung, “IMC morphology, interfacial reaction and joint reliability of Pb-free Sn-Ag-Cu solder on electrolytic Ni BGA substrate”, Journal of Alloys and Compounds, vol. 392, pp. 247-252 (2005)
6. W. H. Tao, C. Chen, C. E. Ho, W. T. Chen, C. R. Kao, “Selective Interfacial Reaction between Ni and Eutectic BiSn Lead-Free Solder”, Chemical Materials, vol. 13, pp. 1051-1056 (2001)
7. C. Y. Lee, J. W. Yoon, Y. J. Kim, S. B. Jung, “Interfacial reactions and joint reliability of Sn-9Zn solder on Cu or electrolytic Au/Ni/Cu BGA substrate” , Microelectronic Engineering , vol. 82, pp. 561-568 (2005)
8. C. E. Chen, Y. M. and C. R. Kao, “Reaction kinetics of the solders-balls with pads in BGA packages during reflow soldering”, Journal of Electronic Materials, vol. 28, pp. 1231-1237 (1999)
9. K. Yokomine, N. Shimizu, Y. Miyamoto, Y. Iwata, D. Love and K.Newman, “Development of electronics Ni/Au plated build-up flip chippackage with highly reliable solder joints”, Electronic Components & Technology Conference, pp. 1384-1392 (2001)
10. Y. D. Jeon, S. Nieland, A. Ostmann, H. Reichl and K. W. Paik, “Astudy on interfacial reactions between electroless Ni-P under bump metallization and 95.5Sn-4.0Ag-0.5Cu alloy”, Journal of Electronic Materials, vol. 32, pp. 548-557 (2003)
11. 陳信文、陳立軒、林永森、陳志銘,“電子構裝技術與材料”,高立 (2005)
12. 田明波著、顏怡文修訂,“半導體電子元件構裝技術”,五南 (2005)
13. 陳娟娟,“綠色環保新趨勢”,台灣工銀投顧 (2005)
14. “RoHS Regulations”COM 809/4 (2008)
15. 劉雨雯,“RoSH綠色指令:全球環境規範&無鉛銲接技術”,龍璟文化 (2005)
16. M. Abtew, and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering , vol. 27, pp. 95-141 (2000).
17. S. Choi, J. G. Lee, F. Guo, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Creep properties of Sn-Ag solder joints containing intermetallic particles”, Journal of Materials, vol. 53(6), pp. 22-26 (2001)
18. K. N. Tu, J. C. M. Li, “Spontaneous whisker growth on lead-freesolder finishes”, Materials Chemistry and Physics, vol. 409, pp.131-139 (2005)
19. G. T. T. Sheng, W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R.S.Celestre, A. A. MacDowell, Y. Y, Bong. L. Nguyen, Electronic Components and Technology Conference, pp.628-633 (2002).
20. I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, Ohio (1987)
21. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties,” Applied physics letters, vol. 63, pp. 15-17 (1993)
22. N. Saunders and A. P. Miodownik, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1990)
23. S. H. Huh, K. S. Kim, K. Suganuma, “Effect of Ag addition on the microstructural and mechanical properties of Sn-Cu eutectic solder”, Mater. Trans., vol. 42, pp. 739-744 (2001)
24. H. Okamoto, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1990)
25. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, vol. 23, pp. 693-700 (1994)
26. K. Suganuma, “Microstructural features of lift-off phenomenon in through-hole circuit soldered by Sn-Bi alloy”, Scripta Materialia, vol.38(9), pp. 1333-1340 (1998)
27. Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1985)
28. M. McCormack, and S. Jin, “Progress in the design of new lead-freesolders”, Journal of Materials, vol. 45 , pp. 36-40 (1993)
29. S. Vaynman and M. E. Fine, “Development of flux for lead-freesolders contain zinc”, Scripta Materialia, vol. 41, pp. 1269–1271 (1999)
30. P. Nash and A. Nash, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1991)
31. D. Gur and M. Bamberger, “Reactive isothermal solidification in the Ni-Sn system ”, Acta Materialia, vol. 46, pp. 4917-4923 (1998)
32. M. Mita, M. Kajihara, N. Kurokawa, and K. Sakamoto, “Growth behavior of Ni3Sn4 layer during reactive diffusion between Ni and Sn at solid-state temperatures”, Materials Science and Engineering, vol. 430, pp.269-275 (2005).
33. S. K. Kang and V. Ramachandran , “Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface”, Scripta Metall., vol. 14, pp. 421-424 (1980).
34. S. W. Chen, C. M. Chen and W. C. Liu, “The electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions”, Journal of Electronic Materials, vol. 27(11), pp. 1193-1198 (1998).
35. W. J. Tomlinson and H. G. Rhodes, “Kinnetics of intermetallic compound growth between nickel, electroless Ni-P, electroless Ni-B and tin at 453 to 493 K”, Journal of Materials Science, vol. 22(5), pp. 1769-1772 (1987).
36. Wei. Chen. Luo and C. R. Kao, “Liquid/solid and solid/solid reactions between SnAgCu lead-free solders and Ni surface finish”, Electronic Materials and Packaging, Proceedings of the 4th International Symposium, pp.330-334 (2002).
37. C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, “Effects of limited Cu supply on soldering reactions between SnAgCu and Ni”, Journal of Electronic Materials, vol. 35, pp. 1017-1024 (2006).
38. C. H. Wang, S.W. Chen,“Sn-0.7 wt.%Cu/Ni interfacial reactions at 250℃”, Acta Materialia, vol. 54, pp.247-253 (2006).
39. J. W. Yoon, S. W. Kim and S. B. Jung, “Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn-Cu/Ni solder joint”, Journal of Alloys and Compounds, vol. 415, pp.56-61 (2006).
40. J. W. Yoon, S. W. Kim, J. A. M. Koo, D. G. Kim, S. B. Jung, “Reliability investigation and interfacial reaction of ball-grid-array packages using the lead-free Sn-Cu solder”, Journal of Electronic Materials, vol. 33, pp. 1190-1199 (2004).
41. H. Nishikawa, J. Y. Piao, T. Takemoto, “Interfacial reaction between Sn-0.7Cu (-Ni) solder and Cu substrate”, vol. 35, pp. 1127-1132 (2006).
42. W. T. Chen, C. E. Ho, C. R. Kao, “Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders”, Journal of Materials Research, vol. 17, pp. 263-266 (2002).
43. J. Wang, H.S. Liu, L.B. Liu, and Z.P. Jin, “Interfacial Reaction between Sn-Bi Alloy and Ni Substrate”, Journal of Electronic Materials, vol. 35, pp. 1842-1847 (2006).
44. C. Chen, C.E. Ho, A.H. Lin, G. L. Luo, C. R. Kao,“Long-term aging study on the solid-state reaction between 58Bi42Sn solder and Ni substrate”, Journal of Electronic Materials, vol 29, pp. 1200-1206 (2000).
45. P. Nash, and Y. Y. Pan, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1991).
46. Y. W. Yen, W. K. Liou, “Effect of Cu Addition on Interfacial Reaction between Sn-9Zn Lead-Free Solder and Ni Substrate”, Journal of Materials Research, vol. 22, pp. 2663-2667 (2007).
47. C.Y. Lee, J.W. Yoon, Y.J. Kim, and S.B. Jung, “Interfacial reactions and joint reliability of Sn-9Zn solder on Cu or electrolytic Au/Ni/Cu BGA ”, Microelectronic Engineerig, vol. 82, pp.561-568 (2005).
48. C. Y. Chou, S. W. Chen, Y. S. Chang, “Interfacial reactions in the Sn-9Zn-(xCu)/Cu and Sn-9Zn-(xCu)/Ni couples”, Journal of Materials Research, vol. 21, pp. 1849-1856 (2006).
49. H. Okamoto, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1991).
50. Chi. Won. Hwanga and K. Suganuma,“Interface microstructure between Fe–42Ni alloy and pure Sn”, Materials Research Society, vol. 18, pp.1202-1210 (2003).
51. E. Saiz, C. W. Hwang, K. Suganuma, A. P. Tomsia,“Spreading of Sn-Ag solders on FeNi alloys”, Acta Materialia, vol.51, pp. 3185–3197 (2003).
52. Q. S. Zhua, J. J. Guoa, Z. G. Wanga, Z. F. Zhanga and J. K. Shanga,“Shear of Sn-3.8Ag-0.7Cu Solder Balls on Electrodeposited FeNi Layer”, International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) (2008).
53. T. Laurila, V. Vuorinen, J. K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Materials Science & Engineering Reports, vol.49, pp. 1- 60 (2005).
54. C. H. Lin, S. W. Chen, C. H. Wang, J. Electron. Mater., vol. 31, pp. 907-915 (2002).
55. D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, Y. A. Chang, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1990).
56. 方揚凱,“無鉛銲料與Au/Pd/Ni/Cu、Au/Pd/Ni/Brass基材之界面反應,碩士論文 (2008).
57. W. Hume-Rothery, J. W. Christian, and W. B. Pearson, “Metallurgical Equilibrium Diagrams”, The Institute of Physics, London (1952).
58. 楊素純、王儀雯、張智強、高振宏,“SnAgCu銲點中介金屬發生『大規模剝璃』(Massive spalling)之探討”,台灣化學工程學會-電子與光電構裝專刊,第五十五卷第五期 (2008).
59. D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, “Intermetallic compounds growth between Sn-3.5Ag lead-free solder and Cu substrate by dipping method ”, Journal of Alloys and Compounds, vol.392, pp. 192-199 (2005).
60. J.O. Suh, K.N. Tu, G.V. Lutsenko, A.M. Gusak, “Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper”, Acta Materialia, vol.56, pp.1075-1083 (2008).

QR CODE