簡易檢索 / 詳目顯示

研究生: 劉晏慈
Yen-Tzu Liu
論文名稱: 反應式濺鍍法製備施受體共摻雜的氮化鎵薄膜及其性質研究
Processing and Property Characterization of Donor-Acceptor Co-substituted Gallium Nitride Films Prepared by Reactive Sputtering
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 郭永綱
Yung-Kang Kuo
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: 濺鍍施體受體共摻雜鋅錫摻雜氮化鎵薄膜電特性p-n二極體
外文關鍵詞: sputtering, co-substituted GaN, Zn- and Sn-doped GaN, thin films, electrical property, p-n junction
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以RF反應式濺鍍法製備施體-受體共摻雜n型或p型的ZnSnGaN薄膜,並探討不同摻雜比例、濺鍍功率與沉積溫度對於薄膜品質、電性及光學性質之影響。於本實驗中我們利用EDS、SEM、AFM、XRD、霍爾效應量測儀、UV-vis及TEM來分析薄膜特性。
    實驗中使用Zn+Sn+Ga+GaN陶金靶,以濺鍍功率120瓦、沉積溫度400 oC並固定氬氣及氮氣流量,製備不同摻雜量之ZnxSn0.04GaN薄膜(x= 0、0.03、0.06與0.09)。實驗結果顯示薄膜皆為(10-10)優選方向之纖鋅礦結構。霍爾效應量測結果得知,當Zn摻雜量超過6 at%時,薄膜不需要經過高溫退火程序即可由n型轉變為p型半導體薄膜,最高電洞濃度為3.3x10^17 cm^-3,載子遷移率為3 cm^2^V^-1s^-1,導電率為0.16 S·cm^-1。隨著摻雜量提升,薄膜能隙會由3.12 eV下降至2.89 eV。
    當改變濺鍍功率90、120與150瓦製備Zn0.06Sn0.04GaN薄膜,其沉積速率會隨著功率提高而增加,在150瓦下的濺鍍條件下製備之薄膜結晶性較佳,且電洞濃度及導電率最高,分別為5.1x10^17 cm^-3與1.1 S·cm^-1。另外,透過UV穿透光譜計算薄膜的能隙,隨著濺鍍功率增加,能隙會由3.22 eV下降至2.92 eV。
    此外,本研究改變沉積溫度100 – 400 oC,探討溫度對於Zn0.06Sn0.04GaN薄膜性質之影響。隨著沉積溫度增加,結晶性會隨之提升,由電性量測結果得知,當沉積溫度為400 oC時,薄膜具有最高之載子濃度及導電率,透過UV穿透光譜計算薄膜能隙大小,隨著溫度增加薄膜能隙會有些微縮小的情形。
    本研究中利用不同摻雜量之ZnxSn0.04GaN薄膜(x= 0、0.03、0.06與0.09)與Si基板堆疊製作p-n異質接面二極體,以及利用n-Zn0.03Sn0.04GaN與p-Zn0.09Sn0.04GaN在藍寶石基板上建構而成p-n同質接面二極體,並量測電流-電壓曲線,結果顯示兩種二極體元件皆具有二極體特性及整流作用。


    In this research, we successfully deposited donor-acceptor co-substituted ZnSnGaN films by radio-frequency reactive sputtering technique with single cermet targets in an Ar/N2 atmosphere. ZnxSn0.04GaN (x= 0, 0.03, 0.06 and 0.09) films were deposited on Si (100) substrates at 400 oC with RF output power at 120 watt. X-ray diffraction results showed that ZnSnGaN films had a wurtzite structure with a preferential (10-10) growth plane. The film transformed into p-type conduction at x= 0.06. The highest conductivity was found to be 0.16 S·cm^-1 for the Zn0.09Sn0.04GaN film due to the high hole concentration of 3.3x10^17 cm^-3. The values of band gap for ZnxSn0.04GaN films were found in the range of 2.89 – 3.12 eV.
    The comparison among Zn0.06Sn0.04GaN films deposited at various RF powers of 90, 120 and 150 W indicated that crystalline quality was improved with RF power. As power increased to 150 watt, the carrier concentration increased to 5.1x10^17 cm^-3 and conductivity was 1.1 S·cm^-1. The energy bandgap of Zn0.06Sn0.04GaN films decreased from 3.22 to 2.92 eV, as power increased from 90 to 150 watt.
    When substrate temperature was increased from 100 oC to 400 oC, the crystallinity increased with temperature. The 400 oC-deposited film had the highest hole concentration and electrical conductivity. It is found that the optical band gap of the Zn0.06Sn0.04GaN films slightly decreased with increasing temperature.
    In addition, the p-n junction ZnxSn0.04GaN diodes were all fabricated successfully by sputtering technique with cermet targets for p- and n-type ZnxSn0.04GaN and metal targets for electrodes. The current-voltage curves of the p-n diode tested at room temperature were performed. The I-V curves exhibited rectifying behavior. By using equations based on the standard thermionic-emission (TE) mode, the barrier height and ideality factor of the diodes were also determined.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 Chapter 1 緒論 1.1 前言 1.2 研究動機與目的 Chapter 2 文獻回顧與原理 2.1 氮化鎵(Gallium Nitride, GaN)介紹 2.2 施體摻雜之氮化鎵 (Donor-Doped Gallium Nitride) 2.3 受體摻雜之氮化鎵 (Acceptor-Doped Gallium Nitride) 2.4 施體受體共摻雜之氮化鎵(Donor-Acceptor Co-doped Gallium Nitride) Chapter 3 實驗方法與步驟 3.1 實驗材料及規格 3.2 實驗儀器說明 3.2.1 RF反應式濺鍍系統 3.2.2 真空熱壓機 3.2.3 高溫真空管型爐系統 3.2.4 超音波震盪機 3.3 實驗步驟 3.3.1 靶材粉末配置 3.3.2 熱壓靶材 3.3.3 基板裁切與清洗 3.3.4 薄膜濺鍍 3.3.5 製備元件 3.3.6 TEM試片製備 3.3.7 薄膜特性量測 3.4 分析儀器介紹及量測參數 3.4.1 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 3.4.2 原子力顯微鏡 (Atomic Force Microscopy System) 3.4.3 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 3.4.4 霍爾效應量測系統 (Hall Effect Measurement System) 3.4.5 紫外光、可見光/近紅外光分析儀 (UV-Vis/NIR spectrophotometer) 3.4.6 半導體元件分析儀 (Semiconductor Device Parameter Analyzer) 3.4.7 場發射雙束型聚焦離子束顯微鏡 (Dual Beam Focused Ion Beam, FIB) 3.4.8 場發射穿透式電子顯微鏡 (Field Emission Gun Transmission Electron Microscopy, FEG-TEM) Chapter 4 結果與討論 4.1 改變Zn摻雜量之Sn0.04GaN薄膜特性分析及探討 4.1.1 改變Zn摻雜量之ZnxSn0.04GaN薄膜成分分析 4.1.2 改變Zn摻雜量之ZnxSn0.04GaN薄膜SEM分析 4.1.3 改變Zn摻雜量之ZnxSn0.04GaN薄膜AFM分析 4.1.4 改變Zn摻雜量之ZnxSn0.04GaN薄膜XRD分析 4.1.5 改變Zn摻雜量之ZnxSn0.04GaN薄膜霍爾效應電性量測 4.1.6 改變Zn摻雜量之ZnxSn0.04GaN薄膜光學性質分析 4.1.7 ZnSnGaN薄膜HR-TEM及元素Mapping分析 4.2 改變濺鍍功率之ZnSnGaN薄膜特性分析及探討 4.2.1 改變濺鍍功率之ZnSnGaN薄膜成分分析 4.2.2 改變濺鍍功率之ZnSnGaN薄膜SEM分析 4.2.3 改變濺鍍功率之ZnSnGaN薄膜AFM分析 4.2.4 改變濺鍍功率之ZnSnGaN薄膜XRD分析 4.2.5 改變濺鍍功率之ZnSnGaN薄膜霍爾效應電性量測 4.2.6 改變濺鍍功率之ZnSnGaN薄膜光學性質分析 4.3 改變沉積溫度之ZnSnGaN薄膜特性分析及探討 4.3.1 改變沉積溫度之ZnSnGaN薄膜成分分析 4.3.2 改變沉積溫度之ZnSnGaN薄膜SEM分析 4.3.3 改變沉積溫度之ZnSnGaN薄膜AFM分析 4.3.4 改變沉積溫度之ZnSnGaN薄膜XRD分析 4.3.5 改變沉積溫度之ZnSnGaN薄膜霍爾效應電性量測 4.3.6 改變沉積溫度之ZnSnGaN薄膜光學性質分析 4.4 ZnSnGaN之p-n二極體電性分析及探討 4.4.1 ZnxSn0.04GaN之異質接面二極體電性分析 4.4.2 ZnxSn0.04GaN之p-n同質接面二極體熱穩定性與電性分析 Chapter 5 結論 Chapter 6 參考文獻

    [1]Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate, Solid-State Electronics, 50 (2006) 1744-1747.
    [2]Y. J. Liu, D. F. Guo, K. Y. Chu, S. Y. Cheng, J. K. Liou, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. S. Hsu, T. Y. Tsai, W. C. Liu, Improved current-spreading performance of an InGaN-based light-emitting diode with a clear p-GaN/n-GaN barrier junction, Displays, 32 (2011) 330-333.
    [3]M. Ali, O. Svensk, L. Riuttanen, M. Kruse, S. Suihkonen, A. E. Romanov, P. T. Törmä, M. Sopanen, H. Lipsanen, M. A. Odnoblyudov, V. E. Bougrov, Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning, Semiconductor Science and Technology, 27 (2012) 082002.
    [4]E. Yohei, Y. Yusuke, K. Takashi, A. Katsushi, U. Masaki, A. Masahiro, S. Takamichi, T. Shinji, I. Takatoshi, K. Koji, N. Takao, 531 nm green lasing of InGaN based laser diodes on semi-polar {2021} free-standing GaN substrates, Applied Physics Express, 2 (2009) 082101.
    [5]M. Martens, J. Schlegel, P. Vogt, F. Brunner, R. Lossy, J. Würfl, M. Weyers, M. Kneissl, High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching, Applied Physics Letters, 98 (2011) 211114.
    [6]B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, F. Karouta, Optimisation of the Ti/Al/Ni/Au ohmic contact on AlGaN/GaN FET structures, Journal of Crystal Growth, 241 (2002) 15-18.
    [7]I. Takenaka, K. Ishikura, K. Asano, S. Takahashi, Y. Murase, Y. Ando, H. Takahashi, C. Sasaoka, High-efficiency and high-power microwave amplifier using GaN-on-Si FET with improved high-temperature operation characteristics, IEEE Transactions on Microwave Theory and Techniques, 62 (2014) 502-512.
    [8]A. M. Dabiran, A. M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D. C. Look, P. P. Chow, Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures, Applied Physics Letters, 93 (2008) 082111.
    [9]M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics, IEEE Electron Device Letters, 31 (2010) 189-191.
    [10]T. Narita, A. Wakejima, T. Egawa, Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate, Japanese Journal of Applied Physics, 52 (2013) 01AG06.
    [11]K. Kumakura, T. Makimoto, High performance pnp AlGaN∕GaN heterojunction bipolar transistors on GaN substrates, Applied Physics Letters, 92 (2008) 153509.
    [12]Z. Lochner, H. J. Kim, Y. C. Lee, Y. Zhang, S. Choi, S. C. Shen, P. D. Yoder, J. H. Ryou, R. D. Dupuis, NpN-GaN/InxGa1−xN/GaN heterojunction bipolar transistor on free-standing GaN substrate, Applied Physics Letters, 99 (2011) 193501.
    [13]呂彥興, Applications of Ga-doped ZnO contact GaN on GaN-based LED, 國立成功大學光電科學與工程研究所碩士學位論文, 2007.
    [14]C. W. Zou, M. L. Yin, M. Li, L. P. Guo, D. J. Fu, GaN films deposited by middle-frequency magnetron sputtering, Applied Surface Science, 253 (2007) 9077-9080.
    [15]J. H. Kim, Y. K. Cho, Structure and properties of gallium nitride thin films deposited on Si (111) by using radio-frequency magnetron sputtering, Journal of the Korean Physical Society, 62 (2013) 619-622.
    [16]P. Mohanta, D. Singh, R. Kumar, T. Ganguli, R. S. Srinivasa, S. S. Major, Effect of ZnO buffer layer thickness on the epitaxial growth of GaN by reactive magnetron sputtering, Thin Solid Films, 544 (2013) 238-243.
    [17]H. K. Yoshida, R. Kato, T. Yamamoto, New valence control and spin control method in GaN and AlN by codoping and transition atom doping, Journal of Crystal Growth, 231 (2001) 428-436.
    [18]W. C. Johnson, J. B. Parsons, Nitrogen compounds of gallium. III, The Journal of Physical Chemistry, 36 (1931) 2588-2594.
    [19]H. P. Maruska, J. J. Tietjen, The preparation and properties of vapor-deposited single-crystalline GaN, Applied Physics Letters, 15 (1969) 327-329.
    [20]L. Liu, J. H. Edgar, Substrates for gallium nitride epitaxy, Materials Science and Engineering: R: Reports, 37 (2002) 61-127.
    [21]S. Strite, H. Morkoç, GaN, AlN, and InN: A review, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 10 (1992) 1237-1266.
    [22]蔡妙嬋, Ivestigation of polarization-related effect on blue InGaN light-emitting diodes, 國立彰化師範大學光電科技研究所碩士學位論文, 2008.
    [23]賴彥霖, Microstructure and optical properties of InGaN/GaN multiplequantum wells comprised of InGaN dots, 國立成功大學材料科學與工程學系博士學位論文, 2006.
    [24]B. Zhang, Y. Liu, A review of GaN-based optoelectronic devices on silicon substrate, Chinese Science Bulletin, 59 (2014) 1251-1275.
    [25]S. Yoshida, S. Misawa, S. Gonda, Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates, Applied Physics Letters, 42 (1983) 427-429.
    [26]H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Applied Physics Letters, 48 (1986) 353-355.
    [27]S. Nakamura, GaN growth using GaN buffer layer, Japanese Journal of Applied Physics, 30 (1991) 1705-1707.
    [28]C. G. Van de Walle, C. Stampfl, J. Neugebauer, Theory of doping and defects in III–V nitrides, Journal of Crystal Growth, 189–190 (1998) 505-510.
    [29]S. I. Molina, A. M. Sánchez, F. J. Pacheco, R. Garcı́a, M. A. Sánchez-Garcı́a, F. J. Sánchez, E. Calleja, The effect of Si doping on the defect structure of GaN/AlN/Si(111), Applied Physics Letters, 74 (1999) 3362-3364.
    [30]P. R. Hageman, W. J. Schaff, J. Janinski, Z. L. Weber, N-type doping of wurtzite GaN with germanium grown with plasma-assisted molecular beam epitaxy, Journal of Crystal Growth, 267 (2004) 123-128.
    [31]D. Li, B. Ma, R. Miyagawa, W. Hu, M. Narukawa, H. Miyake, K. Hiramatsu, Photoluminescence study of Si-doped a-plane GaN grown by MOVPE, Journal of Crystal Growth, 311 (2009) 2906-2909.
    [32]Q. Mao, Z. Ji, J. Xi, H. He, H. Cao, Theoretical studies of low strain n-type GaN co-doped by Si and Sn, Physica B: Condensed Matter, 405 (2010) 145-147.
    [33]Y. Arakawa, K. Ueno, H. Imabeppu, A. Kobayashi, J. Ohta, H. Fujioka, Electrical properties of Si-doped GaN prepared using pulsed sputtering, Applied Physics Letters, 110 (2017) 042103.
    [34]A. Hiroshi, K. Masahiro, H. Kazumasa, A. Isamu, P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI), Japanese Journal of Applied Physics, 28 (1989) L2112.
    [35]S. Nakamura, Y. Harada, M. Seno, Novel metalorganic chemical vapor deposition system for GaN growth, Applied Physics Letters, 58 (1991) 2021-2023.
    [36]N. Shuji, M. Takashi, S. Masayuki, I. Naruhito, Thermal annealing effects on p-type Mg-doped GaN films, Japanese Journal of Applied Physics, 31 (1992) L139.
    [37]K. S. Kim, M. S. Han, G. M. Yang, C. J. Youn, H. J. Lee, H. K. Cho, J. Y. Lee, Codoping characteristics of Zn with Mg in GaN, Applied Physics Letters, 77 (2000) 1123-1125.
    [38]C. Guarneros, V. Sánchez, Magnesium doped GaN grown by MOCVD, Materials Science and Engineering: B, 174 (2010) 263-265.
    [39]S. Fischer, C. Wetzel, E. E. Haller, B. K. Meyer, On p‐type doping in GaN-acceptor binding energies, Applied Physics Letters, 67 (1995) 1298-1300.
    [40]H. Amano, K. Hiramatsu, M. Kito, N. Sawaki, I. Akasaki, Zn related electroluminescent properties in MOVPE grown GaN, Journal of Crystal Growth, 93 (1988) 79-82.
    [41]F. R. Ding, A. Vantomme, W. H. He, Q. Zhao, B. Pipeleers, K. Jacobs, I. Moerman, K. Iakoubovskii, G. J. Adriaenssens, Zn distribution and location, luminescence measurement after Zn channeled implantation in GaN and RTA annealing, Materials Science in Semiconductor Processing, 6 (2003) 193-195.
    [42]C. T. Wu, Y. Zhou, Q. Y. Sun, L. Q. Huang, A. L. Li, Z. M. Li, Characterization of Zn-doped GaN grown by metal-organic vapor phase epitaxy, Rare Metals, (2014).
    [43]Y. Tetsuya, K. Y. Hiroshi, Materials design for the fabrication of low-resistivity p-type GaN using a codoping method, Japanese Journal of Applied Physics, 36 (1997) L180.
    [44]K. S. Kim, G. M. Yang, H. J. Lee, The study on the growth and properties of Mg doped and Mg-Si codoped p-type GaN, Solid-State Electronics, 43 (1999) 1807-1812.
    [45]S. Nakamura, S. J. Pearton, G. Fasol, The blue laser diode, Springer Verlag, (1997) 177-185.
    [46]J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang, Y. K. Su, White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer, IEEE Photonics Technology Letters, 14 (2002) 450-452.
    [47]M. A. Reshchikov, M. Foussekis, J. D. McNamara, A. Behrends, A. Bakin, A. Waag, Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn, Journal of Applied Physics, 111 (2012) 073106.
    [48]S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J. C. Tedenac, Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature, Journal of Alloys and Compounds, 462 (2008) 335-339.
    [49]S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method, Optical Materials, 34 (2012) 1946-1953.
    [50]H. W. Kim, N. H. Kim, Preparation of GaN films on ZnO buffer layers by rf magnetron sputtering, Applied Surface Science, 236 (2004) 192-197.
    [51]E. T. Selvi, S. M. Sundar, Effect of replacing Sn4+ ions by Zn2+ ions on structural, optical and magnetic properties of SnO2 nanoparticles, Applied Physics A, 123 (2017) 383.
    [52]D. H. Kuo, C. C. Li, T. T. A. Tuan, W. C. Yen, Effects of Mg doping on the performance of InGaN films made by reactive sputtering, Journal of Electronic Materials, 44 (2014) 210-216.
    [53]I. Vurgaftman, J. R. Meyer, Band parameters for nitrogen-containing semiconductors, Journal of Applied Physics, 94 (2003) 3675-3696.
    [54]C. W. Ting, C. P. Thao, D. H. Kuo, Electrical and structural characteristics of tin-doped GaN thin films and its hetero-junction diode made all by RF reactive sputtering, Materials Science in Semiconductor Processing, 59 (2017) 50-55.
    [55]J. Neugebauer, C. G. Van de Walle, Atomic geometry and electronic structure of native defects in GaN, Physical Review B, 50 (1994) 8067-8070.
    [56]A. Shikanaia, H. Fukahori, Y. Kawakami, K. Hazu, T. Sota, T. Mitani, T. Mukai, S. Fujita, Optical properties of Si-, Ge- and Sn-doped GaN, Physica Status Solidi (b), 235 (2003) 26-30.
    [57]T. Mattila, R. M. Nieminen, Point-defect complexes and broadband luminescence in GaN and AlN, Physical Review B, 55 (1997) 9571-9576.
    [58]J. Neugebauer, C. G. V. d. Walle, Chemical trends for acceptor impurities in GaN, Journal of Applied Physics, 85 (1999) 3003-3005.
    [59]L. L. John, J. Anderson, G. V. d. W. Chris, Impact of group-II acceptors on the electrical and optical properties of GaN, Japanese Journal of Applied Physics, 52 (2013) 08JJ04.
    [60]D. O. Demchenko, M. A. Reshchikov, Blue luminescence and Zn acceptor in GaN, Physical Review B, 88 (2013) 115204.
    [61]Z. S. Schiaber, D. M. G. Leite, J. R. R. Bortoleto, P. N. L. Filho, J. H. D. da Silva, Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering, Journal of Applied Physics, 114 (2013) 183515.
    [62]C. R. Lee, K. W. Seol, J. M. Yeon, D. K. Choi, H. K. Ahn, The effect of p-GaN : Mg layers on the turn-on voltage of p–n junction LED, Journal of Crystal Growth, 222 (2001) 459-464.
    [63]N. N. K. Reddy, V. R. Reddy, C. J. Choi, Influence of rapid thermal annealing effect on electrical and structural properties of Pd/Ru Schottky contacts to n-type GaN, Materials Chemistry and Physics, 130 (2011) 1000-1006.
    [64]A. Kumar, S. Arafin, M. C. Amann, R. Singh, Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation, Nanoscale Research Letters, 8 (2013) 481.
    [65]T. T. A. Tuan, D. H. Kuo, A. D. Saragih, G. Z. Li, Electrical properties of RF-sputtered Zn-doped GaN films and p-Zn-GaN/n-Si hetero junction diode with low leakage current of 10-9 A and a high rectification ratio above 105, Materials Science and Engineering: B, 222 (2017) 18-25.
    [66]K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung, M. Razeghi, High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well, Applied Physics Letters, 84 (2004) 1046-1048.
    [67]J. H. He, C. H. Ho, The study of electrical characteristics of heterojunction based on ZnO nanowires using ultrahigh-vacuum conducting atomic force microscopy, Applied Physics Letters, 91 (2007) 233105.
    [68]T. T. A. Tuan, D. H. Kuo, C. C. Li, G. Z. Li, Effect of temperature dependence on electrical characterization of p-n GaN diode fabricated by RF magnetron sputtering, Materials Sciences and Applications, 06 (2015) 809-817.

    無法下載圖示 全文公開日期 2022/07/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE