簡易檢索 / 詳目顯示

研究生: Berhanu-Tulu Kacha
Berhanu-Tulu Kacha
論文名稱: 電阻轉換非揮發性記憶體元件之無電致成形氧化鋯基薄膜的製備與特性研究
Preparation and Characterization of Forming-Free ZrOx-Based Thin Films for Resistive Switching Nonvolatile Memory Devices
指導教授: 朱瑾
Jinn P. Chu
口試委員: 周振嘉
Chen-Chia Chou
郭東昊
Kuo, Dong-Hau
王錫福
Sea-Fue Wang
梁元彰
Yuan-Chang Liang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 144
中文關鍵詞: 電阻式隨機存取記憶體濺鍍沉積電阻轉換薄膜氧空缺快速退火及導電細絲
外文關鍵詞: Resistance switching random access memory (RRAM), sputter deposition, resistive switching (RS), thin film, oxygen vacancies, rapid thermal annealing (RTA) and conduction fil
相關次數: 點閱:471下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電阻式隨機存取記憶體(RRAM) 已經引起相當大的關注於下一代非揮發性記憶體的應用,由於其結構簡單可應用於高密度積體電路,也可以兼容於傳統的互補式金屬氧化物半導體(CMOS),並且具有低操作功率、開關轉換速度快及長時間數據記憶,因此於過去十年RRAM已成為非揮發性記憶體中最有潛力的候選者之一 。然而,電阻轉換之確切機制仍然有待定論,因此於商業化使用前,RRAM必須在更加優化。
    本實驗研究以多元氧化物(MCO) (ZrCuAlNi)Ox, Zr1-yCuyO2-3y/2 (ZCO), Zr1-rNirO2-r (ZNO) 及 非晶 ZrCuOk (a-ZCO) 薄膜為主之記憶體元件的電阻轉換特性及機制。厚度約15奈米的多元氧化物活性層具有非晶結構,是以濺鍍方式沉積而並無基材加熱或經退火處理。其元件展現無電致成形(forming-free)的單極電阻轉換性質(ROFF/RON~22)並具有低操作電壓(<1.7V) 、資料保存時間長、好的重複讀寫能力及高電阻值比。其電阻轉換性質是由於氧空缺存在於非晶薄膜中形成導通細絲傳導所造成。
    為了研究多元金屬氧化物的成分對於電阻轉換及其機制的影響,我們將靶材成分由原本四元減少為二元金屬。因此我們接著研究欠氧的鋯銅氧化物(ZCO)薄膜作為RRAM的活化層,結果發現初鍍膜及快速退火後的ZCO薄膜皆呈現單極電阻轉換,並具有長時間資料記憶、無電致成形(forming-free)、低操作電壓(<1.9V)及薄的厚度(約11奈米)。高真空快速退火處理至150°C有助於改善薄膜的電阻轉換次數(自286次提升到6,405次)及電阻比(自13提升到25),其退火後元件的電阻轉換特性改善是由於薄膜中具有適量及較均勻的氧空缺及較佳的薄膜品質,此外我們利用導電原子力顯微鏡 (CAFM) 觀察元件於高電阻態及低電阻態的電流影像,其電流密度於高電阻態及低電阻態分別為 ~3.0x102 nA/μm2 及 ~3.3x10-2 nA/μm2,因此我們推斷元件的電阻轉換機制歸因於氧空缺形成導電細絲的成形與斷裂。
    另一方面,我們也研究鋯鎳氧化物(ZNO)薄膜作為RRAM元件的介電層,包括Pt/Zr1-rNirO2-r/Pt 記憶體元件的電阻轉換行為及機制。Zr1-rNirO2-r 薄膜是由濺鍍方式沉積,厚度僅約7奈米,且並無基材加熱或經退火處理,此元件呈現無電致成形(forming-free)的單極電阻轉換性質,包括低操作電壓(<1.9V)、長時間資料記憶、較佳的重複讀寫能力及大於兩個數量級的電阻比,研究分析顯示元件的電阻轉換機制是由於氧空缺形成導電細絲的成形與斷裂。另一方面,利用氧化物靶材濺鍍 a-ZCO 薄膜,並與由二元金屬靶材所鍍出來的 ZCO 薄膜進行比較,結果顯示,以 a-ZCO 為主的元件呈現無電致成形的單極性轉換性質並具有較低的操作電壓 (<1.8V) 、長時間資料保存及好的重複讀寫能力。
    本論文研究新興 ZrOx 基隨機存取式記憶體元件的電阻轉換性質及電阻轉換參數,其具有無電致成形、低功率、較長時間的資料保存及較薄的厚度,因此 ZrOx 基薄膜於未來低功率應用具有潛力,並實現於奈米級微電子元件之應用


    Resistive switching random access memory (RRAM) has attracted great interest for the application in next generation nonvolatile memory. RRAM has gained significant interest in the past decade as one of the most promising candidates as a nonvolatile memory device due to its potential for high density integration, low operating power, fast switching speed, long data retention time, simple structure and compatibility with conventional CMOS process. However, the resistive switching (RS) mechanism is still under debate, and the devices have to be optimized before they can be used commercially.
    In this work, RS characteristics and mechanism of multicomponent oxide (MCO) (ZrCuAlNi)Ox, Zr1-yCuyO2-3y/2 (ZCO), Zr1-rNirO2-r (ZNO) and amorphous ZrCuOk (a-ZCO) thin film-based memory devices are studied. MCO-based on an amorphous active layer with a thin thickness of ~15nm is sputter deposited without substrate heating or post-annealing. The device shows forming-free unipolar RS properties of low operation voltage (<1.7V), long retention time, good endurance and resistance ratio of 22. The RS property is considered to be dominated by the filamentary conduction due to the presence of oxygen vacancies in the grain boundary-free structure.
    To further investigate the dominant substances for the RS behavior and mechanism in the MCO film, we reduce the composition of the target to binary metals. Then, the thin oxygen deficient ZCO films are investigated for nonvolatile memory applications. Both the as-deposited ZCO and rapid thermal annealed (RTA) A-ZCO samples show unipolar resistive switching, good retention time, forming free, low voltage (<1.9V) and thin thickness (~11 nm). The high vacuum RTA treatment at 150°C for 30 minutes is beneficial to improve the switching cycles from 286 to ~6.4x103 and the resistance ratio from 13 to 25. The improved characteristics of the RTA`ed-samples are achieved due to appropriate defect concentration and film quality improvement. The current images in the low resistance state (LRS) and high resistance state (HRS) of the device observed using CAFM. The current density of LRS and HRS are ~3.0x102 nA/μm2 and ~3.3x10-2 nA/μm2, respectively. The RS mechanism of the device is attributed to the formation and rupture of conduction filaments (CFs) based on defects (oxygen vacancies).
    Also, this work includes the fabrication and characterization of ZNO thin film-based RRAM devices. The RS behaviours and mechanism of Pt/Zr1-rNirO2-r/Pt memory device are studied. Zr1-rNirO2-r active layer with a thin thickness of ~7nm is sputter deposited without substrate heating or post-annealing. The device shows forming-free unipolar RS properties of low operation voltage (<1.9V), long retention time, good endurance and more than two-order resistance ratio. The analysis shows that the RS property initiates from the formation and rupture of CFs due to the presence of defects (oxygen vacancies) in the oxide films. In addition, a-ZCO films were prepared from oxide target to compare the result with ZCO samples which were prepared from binary metal target. The a-ZCO-based devices show forming-free unipolar RS properties of low operation voltage (<1.8V), good retention time and endurance.
    Therefore, RS properties and switching parameters of emerging ZrOx-based RRAM devices for forming-free, low power, longer data retention and thinner thickness nonvolatile memory devices are studied. A potential application of ZrOx-based thin films in future low power, nanoscale microelectronic device applications is realized from this study.

    中文摘要 I ABSTRACT III ACKNOWLEDGMENT V TABLE OF CONTENTS VI LIST OF TABLES IX LIST OF FIGURE CAPTIONS X Abbreviations XV CHAPTER 1 INTRODUCTION 1 Objectives 3 CHAPTER 2 BACKGROUND 5 2.1 Resistive Random Access Memory (RRAM) 5 2.2 Types of Resistive Switching 9 2.2.1 Unipolar Resistive Switching 9 2.2.2 Bipolar Resistive Switching 10 2.3 Mechanisms of Resistive Switching in RRAM Devices 11 2.3.1 Conduction Filament Mechanism 11 2.3.2 Electrochemical Metallization Mechanism 14 2.3.4 Thermo-chemical Mechanism 19 2.4 Mechanisms of Current Conduction 21 2.4.1 Ohmic Conduction 22 2.4.2 Schottky Emission 24 2.4.3 Fowler-Nordheium Tunnelling 26 2.4.4 Space-Charge-Limited Conduction 27 2.4.5 Pool-Frenkel Emission 29 2.5 Conductive Atomic Force Microscope (CAFM) Study of CFs in RRAM Devices 31 2.6 RRAM Device Performance Parameters 34 2.7 Transition Metal Oxides for RRAM Application 36 2.8 Selection of Materials 36 2.9 Forming-Free and Amorphous Film-Based RRAM Devices 38 CHAPTER 3 EXPERIMENTAL PROCEDURES 42 3.1 Sample Preparation 42 3.1.1 Substrate Preparation 42 3.1.2 Target Preparation 43 3.1.3 Thin Film Deposition by RF Magnetron Sputtering System 46 3.1.4 Thermal Annealing Conditions 50 3.2 Materials Characterisation Methods 51 3.2.1 Microstructure, Composition and Crystallography Analysis 51 3.2.2 Chemical State Analysis 51 3.2.3 Electrical Property Measurements 51 CHAPTER 4 RESULTS AND DISCUSSION 55 4.1 Resistive Switching Behaviour of Pt/MCO/Pt Device 55 4.1.1 Resistivity Behaviour of MCO Thin Film 55 4.1.2 I-V, Endurance and Retention Characteristics of Pt/MCO/Pt Device 56 4.1.3 Microstructure and Chemical Composition of MCO Thin Film 59 4.1.4 Current Conduction Mechanism of MCO-Based RRAM 64 4.1.5 Proposed Resistive Switching Mechanism 67 4.2 Resistive Switching Behaviours of Pt/ZCO/Pt and Pt/A-ZCO/Pt Devices 69 4.2.1 As-Deposited Resistive Behaviour of ZCO Film 69 4.2.2 HV RTA Resistive Behaviour of A-ZCO Film 72 4.2.3 I-V, Endurance and Retention Characteristics of Pt/A-ZCO/Pt Devices 73 4.2.4 Microstructure and Chemical Composition of ZCO and A-ZCO Thin Films 76 4.2.5 Mechanism of Resistive Switching 83 4.3 Resistive Switching Behaviour of Pt/ZNO/Pt Device 88 4.3.1 I-V, Endurance and Retention Characteristics of Pt/ZNO/Pt Device 89 4.3.2 Microstructure and Chemical Composition of ZNO Thin Film 92 4.3.3 Current Conduction Mechanism of ZNO-Based RRAM 97 4.3.4 Mechanism for Switching Properties 98 4.4 Resistive Switching Behaviour of Pt/a-ZCO/Pt Device 102 4.4.1 I-V, Endurance and Retention Characteristics of Pt/a-ZCO/Pt Device 102 4.4.2 Microstructure of a-ZCO Thin Film 103 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 108 5.1 Conclusions 108 5.2 Future Works 110 REFERENCES 111

    [1] R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges, Advanced Materials, 21 (2009) 2632-2663.
    [2] S. Raoux, R.M. Shelby, J. Jordan-Sweet, B. Munoz, M. Salinga, Y.-C. Chen, Y.-H. Shih, E.-K. Lai, M.-H. Lee, Phase change materials and their application to random access memory technology, Microelectron. Eng., 85 (2008) 2330-2333.
    [3] G.I. Meijer, Who Wins the Nonvolatile Memory Race?, Science, 319 (2008) 1625-1626.
    [4] E.T. Wertz, Q. Li, Magnetoresistance after initial demagnetization in La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3 magnetic tunnel junctions Applied Physics Letters, 90 (2007) 142506-142506.
    [5] R.E. Jones Jr, P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii, P. Chu, S.J. Gillespie, Ferroelectric non-volatile memories for low-voltage, low-power applications, Thin Solid Films, 270 (1995) 584-588.
    [6] K. Tsunoda, Y. Fukuzumi, J.R. Jameson, Z. Wang, P.B. Griffin, Y. Nishi, Bipolar resistive switching in polycrystalline TiO2 films, Applied Physics Letters, 90 (2007) 113501.
    [7] G.-S. Park, L. Xiang-Shu, D.-C. Kim, R.-J. Jung, L. Myoung-Jae, S. Seo, Observation of electric-field induced Ni filament channels in polycrystalline NiOx film Applied Physics Letters, 91 (2007) 222103-222106.
    [8] W. Yi, L. Byoungil, H.S.P. Wong, Al2O3 -Based RRAM Using Atomic Layer Deposition (ALD) With 1- μA RESET Current, Electron Device Letters, IEEE, 31 (2010) 1449-1451.
    [9] H. Mahne, L. Berger, D. Martin, V. Klemm, S. Slesazeck, S. Jakschik, D. Rafaja, T. Mikolajick, Filamentary resistive switching in amorphous and polycrystalline Nb2O5 thin films, Solid-State Electronics, 72 (2012) 73-77.
    [10] Y. Watanabe, J.G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck, S.J. Wind, Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals, Applied Physics Letters, 78 (2001) 3738-3740.
    [11] W.-Y. Chang, J.-H. Liao, Y.-S. Lo, T.-B. Wu, Resistive switching characteristics in Pr0.7Ca0.3MnO3 thin films on LaNiO3-electrodized Si substrate, Applied Physics Letters, 94 (2009) 172107.
    [12] H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Ionic doping effect in ZrO2 resistive switching memory, Applied Physics Letters, 96 (2010) 123502.
    [13] B. Sun, Y.X. Liu, L.F. Liu, N. Xu, Y. Wang, X.Y. Liu, R.Q. Han, J.F. Kang, Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices, Journal of Applied Physics, 105 (2009) 061630.
    [14] S. Hong, D.X. Long, I. Hwang, J.-S. Kim, Y.C. Park, S.-O. Kang, B.H. Park, Unipolar resistive switching mechanism speculated from irreversible low resistance state of Cu2O films, Applied Physics Letters, 99 (2011) 052105-052103.
    [15] L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, L. Altimime, Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells, Applied Physics Letters, 97 (2010) 243509.
    [16] M.-C. Wu, T.-H. Wu, T.-Y. Tseng, Robust unipolar resistive switching of Co nano-dots embedded ZrO2 thin film memories and their switching mechanism, Journal of Applied Physics, 111 (2012) 014505-014506.
    [17] T.W. Hickmott, Low‐Frequency Negative Resistance in Thin Anodic Oxide Films, Journal of Applied Physics, 33 (1962) 2669-2682.
    [18] S.Q. Liu, N.J. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films, Applied Physics Letters, 76 (2000) 2749-2751.
    [19] B. Hu, F. Zhuge, X. Zhu, S. Peng, X. Chen, L. Pan, Q. Yan, R.-W. Li, Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant, Journal of Materials Chemistry, 22 (2012) 520-526.
    [20] S.H. Jo, K.-H. Kim, W. Lu, High-Density Crossbar Arrays Based on a Si Memristive System, Nano Letters, 9 (2009) 870-874.
    [21] H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J.-E. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. Kim, R.S. Ruoff, S.-Y. Choi, Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications, Nano Letters, 10 (2010) 4381-4386.
    [22] C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films, Nat Mater, 8 (2009) 485-493.
    [23] R. Muenstermann, T. Menke, R. Dittmann, R. Waser, Coexistence of Filamentary and Homogeneous Resistive Switching in Fe-Doped SrTiO3 Thin-Film Memristive Devices, Advanced Materials, 22 (2010) 4819-4822.
    [24] J. Hutchby, M. Garner, Assessment of the Potential & Maturity of Selected Emerging Research Memory Technologies Workshop & ERD/ERM Working Group Meeting The International Technology Roadmap for Semiconductors (ITRS), (2010) 1-55.
    [25] D. Li, M. Li, F. Zahid, J. Wang, H. Guo, Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study, Journal of Applied Physics, 112 (2012) 073512.
    [26] X. Cao, X. Li, X. Gao, W. Yu, X. Liu, Y. Zhang, L. Chen, X. Cheng, Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications, Journal of Applied Physics, 106 (2009) 073723.
    [27] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, H. Tanaka, Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide, Applied Physics Letters, 89 (2006) 103509.
    [28] J.J. Yang, M.D. Pickett, X. Li, A.A. OhlbergDouglas, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal//oxide//metal nanodevices, Nat Nano, 3 (2008) 429-433.
    [29] X. Chen, G. Wu, D. Bao, Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications, Applied Physics Letters, 93 (2008) 093501.
    [30] Z. Liu, T.p. Chen, Y. Liu, S. Zhang, Magnetron Sputtered Ni-rich Nickel Oxide Nano-Films for Resistive Switching Memory Applications, International Journal of Applied Ceramic Technology, 10 (2013) 20-25.
    [31] D.C. Kim, S. Seo, S.E. Ahn, D.-S. Suh, M.J. Lee, B.-H. Park, I.K. Yoo, I.G. Baek, H.-J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films, Applied Physics Letters, 88 (2006) 202102.
    [32] W. Zheng, P.B. Griffin, J. McVittie, S. Wong, P.C. McIntyre, Y. Nishi, Resistive Switching Mechanism in ZnxCd1−xS Nonvolatile Memory Devices, Electron Device Letters, IEEE, 28 (2007) 14-16.
    [33] M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory, Advanced Materials, 19 (2007) 2232-2235.
    [34] B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition, Journal of Applied Physics, 98 (2005) 033715.
    [35] S. Seo, M.J. Lee, D.C. Kim, S.E. Ahn, B.-H. Park, Y.S. Kim, I.K. Yoo, I.S. Byun, I.R. Hwang, S.H. Kim, J.-S. Kim, J.S. Choi, J.H. Lee, S.H. Jeon, S.H. Hong, B.H. Park, Electrode dependence of resistance switching in polycrystalline NiO films, Applied Physics Letters, 87 (2005) 263507.
    [36] H.Y. Lee, P.S. Chen, T.Y. Wu, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, M.-J. Tsai, C. Lien, Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory, Applied Physics Letters, 92 (2008) 142911.
    [37] K. Nagashima, T. Yanagida, K. Oka, T. Kawai, Unipolar resistive switching characteristics of room temperature grown SnO2 thin films, Applied Physics Letters, 94 (2009) 242902.
    [38] D. Ielmini, R. Bruchhaus, R. Waser, Thermochemical resistive switching: materials, mechanisms, and scaling projections, Phase Transitions, 84 (2011) 570-602.
    [39] R. Waser, Redox-based Resistive Switching Memories the Mystery of Nanoionic Processes, IEDM short course, RWTH Aachen University, (2011) 6-18.
    [40] J.J. O'Dwyer, The theory of electrical conduction and breakdown in solid dielectrics, Clarendon Press, 1973.
    [41] D.R. Lamb, Electrical conduction mechanisms in thin insulating films, Methuen, 1967.
    [42] L. Brehmer, Electrical conduction mechanisms in solids., Acta Polymerica, 40 (1989) 682-682.
    [43] L. Dongsoo, C. Hyejung, S. Hyunjun, C. Dooho, H. Hyunsang, L. Myoung-Jae, S. Sun-Ae, I.K. Yoo, Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications, Electron Device Letters, IEEE, 26 (2005) 719-721.
    [44] W. Guan, S. Long, R. Jia, M. Liu, Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide, Applied Physics Letters, 91 (2007) 062111.
    [45] K.-H. Kim, S. Hyun Jo, S. Gaba, W. Lu, Nanoscale resistive memory with intrinsic diode characteristics and long endurance, Applied Physics Letters, 96 (2010) 053106.
    [46] F.-C. Chiu, A Review on Conduction Mechanisms in Dielectric Films, Advances in Materials Science and Engineering, 2014 (2014) 1-18.
    [47] H. Akinaga, H. Shima, Resistive Random Access Memory (ReRAM) Based on Metal Oxides, Proceedings of the IEEE, 98 (2010) 2237-2251.
    [48] A. Sawa, Resistive switching in transition metal oxides, Materials Today, 11 (2008) 28-36.
    [49] F.-C. Chiu, P.-W. Li, W.-Y. Chang, Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films, Nanoscale Res Lett, 7 (2012) 1-9.
    [50] L. Zhong, L. Jiang, R. Huang, C.H. de Groot, Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices, Applied Physics Letters, 104 (2014) 093507.
    [51] C.-J. Li, S. Jou, W.-L. Chen, Effect of Pt and Al Electrodes on Resistive Switching Properties of Sputter-Deposited Cu-Doped SiO2 Film, Japanese Journal of Applied Physics, 50 (2011) 01BG08.
    [52] T.J. Lewis, Electrical Effects at Interfaces and Surfaces, Electrical Insulation, IEEE Transactions on, EI-21 (1986) 289-295.
    [53] N. Ravindra, J. Zhao, Fowler-Nordheim tunneling in thin SiO2 films, Smart Materials and Structures, 1 (1992) 197.
    [54] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, J. Chen, Resistive switching memory effect of ZrO2 films with Zr+ implanted, Applied Physics Letters, 92 (2008) 012117.
    [55] X. Chen, G. Wu, D. Bao, Resistive switching behavior of Pt/Mg0.2Zn 0.8O/Pt devices for nonvolatile memory applications, Applied Physics Letters, 93 (2008) 093501.
    [56] H. Peng, T. Wu, Nonvolatile resistive switching in spinel ZnMn[sub 2]O[sub 4] and ilmenite ZnMnO[sub 3], Applied Physics Letters, 95 (2009) 152106.
    [57] T.-M. Pan, C.-H. Lu, Structural properties and electroforming-free resistive switching characteristics of GdOx, TbOx, and HoOx memory devices, Materials Chemistry and Physics, 139 (2013) 437-442.
    [58] J. John, S. Sivaraman, S. Jayalekshmy, M.R. Anantharaman, Investigations on the mechanism of carrier transport in plasma polymerized pyrrole thin films, Journal of Physics and Chemistry of Solids, 71 (2010) 935-939.
    [59] F.-C. Chiu, C.-Y. Lee, P. Tung-Ming, Current conduction mechanisms in Pr2O3/oxynitride laminated gate dielectrics Journal of Applied Physics, 105 (2009) 074103-074107.
    [60] R.L. Angle, H.E. Talley, Electrical and charge storage characteristics of the tantalum oxide-silicon dioxide device, Electron Devices, IEEE Transactions on, 25 (1978) 1277-1283.
    [61] K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nat Mater, 5 (2006) 312-320.
    [62] C.-P. Hsiung, J.-Y. Gan, S.-H. Tseng, N.-H. Tai, P.-J. Tzeng, C.-H. Lin, F. Chen, M.-J. Tsai, Resistance switching characteristics of TiO2 thin films prepared with reactive sputtering, Electrochemical and Solid-State Letters, 12 (2009) G31-G33.
    [63] L. Yang, C. Kuegeler, K. Szot, A. Ruediger, R. Waser, The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy, Applied Physics Letters, 95 (2009) 013109.
    [64] Q. Zhou, Q. Lu, X. Zhang, Y. Song, Y.Y. Lin, X. Wu, A study of copper oxide based resistive switching memory by conductive atom force microscope, Applied Surface Science, 271 (2013) 407-411.
    [65] H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien, M.J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, in: Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
    [66] Y. Li, S. Long, Q. Liu, Q. Wang, M. Zhang, H. Lv, L. Shao, Y. Wang, S. Zhang, Q. Zuo, S. Liu, M. Liu, Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures, physica status solidi (RRL) – Rapid Research Letters, 4 (2010) 124-126.
    [67] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, Y. Sugiyama, Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V, in: Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 767-770.
    [68] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, N. Awaya, TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching, Applied Physics Letters, 89 (2006) 223509.
    [69] P. Peshev, I. Stambolova, S. Vassilev, P. Stefanov, V. Blaskov, K. Starbova, N. Starbov, Spray pyrolysis deposition of nanostructured zirconia thin films, Materials Science and Engineering: B, 97 (2003) 106-110.
    [70] G. Reyna-Garcia, M. Garcia-Hipolito, J. Guzman-Mendoza, M. Aguilar-Frutis, C. Falcony, Electrical, optical and structural characterization of high-k dielectric ZrO2 thin films deposited by the pyrosol technique, Journal of Materials Science: Materials in Electronics, 15 (2004) 439-446.
    [71] J.C. Garcia, L.M.R. Scolfaro, A.T. Lino, V.N. Freire, G.A. Farias, C.C. Silva, H.W.L. Alves, S.C.P. Rodrigues, E.F. da Silva, Structural, electronic, and optical properties of ZrO2 from ab initio calculations, Journal of Applied Physics, 100 (2006) 104103.
    [72] N. Yu, J.W. Halley, Electronic structure of point defects in rutile TiO2, Physical Review B, 51 (1995) 4768-4776.
    [73] A.S. Khanna, defect structure of oxides, in: Introduction to high temperature oxidation and corrosion, ASM International 2002, pp. 37-39.
    [74] M.S. Lee, S. Choi, C.-H. An, H. Kim, Resistive switching characteristics of solution-deposited Gd, Dy, and Ce-doped ZrO2 films, Applied Physics Letters, 100 (2012) 143504.
    [75] W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2, Electron Device Letters, IEEE, 29 (2008) 434-437.
    [76] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, B. Yu, Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories, Applied Physics Letters, 92 (2008) 232112.
    [77] H.B. Lv, M. Yin, Y.L. Song, X.F. Fu, L. Tang, P. Zhou, C.H. Zhao, T.A. Tang, B.A. Chen, Y.Y. Lin, Forming Process Investigation of CuxO Memory Films, Electron Device Letters, IEEE, 29 (2008) 47-49.
    [78] J. Teixeira, J. Ventura, R. Fermento, J. Araujo, J. Sousa, P. Wisniowski, P. Freitas, Electroforming, magnetic and resistive switching in MgO-based tunnel junctions, Journal of Physics D: Applied Physics, 42 (2009) 105407.
    [79] M.-J. Lee, S. Han, S.H. Jeon, B.H. Park, B.S. Kang, S.-E. Ahn, K.H. Kim, C.B. Lee, C.J. Kim, I.-K. Yoo, Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory, Nano letters, 9 (2009) 1476-1481.
    [80] K. Li, Y. Xia, B. Xu, X. Gao, H. Guo, Z. Liu, J. Yin, Conduction behavior change in amorphous LaLuO3 dielectrics based on correlated barrier hopping theory, Applied Physics Letters, 96 (2010) 182904.
    [81] Z. Wang, H. Xu, X. Li, X. Zhang, Y. Liu, Y. Liu, Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance, Electron Device Letters, IEEE, 32 (2011) 1442-1444.
    [82] W.Z. Chang, J.P. Chu, S.F. Wang, Resistive switching behavior of a thin amorphous rare-earth scandate: Effects of oxygen content, Applied Physics Letters, 101 (2012) 012102-012102-012104.
    [83] W.-Y. Yang, W.-G. Kim, S.-W. Rhee, Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties, Thin Solid Films, 517 (2008) 967-971.
    [84] H.-H. Huang, W.-C. Shih, C.-H. Lai, Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device, Applied Physics Letters, 96 (2010) -.
    [85] C.-Y. Liu, P.-H. Wu, A. Wang, W.-Y. Jang, J.-C. Young, K.-Y. Chiu, T.-Y. Tseng, Bistable resistive switching of a sputter-deposited Cr-doped SrZrO 3 memory film, Electron Device Letters, IEEE, 26 (2005) 351-353.
    [86] S. Lee, J. Lee, S. Chang, H. Yoo, B. Kang, B. Kahng, M.-J. Lee, C. Kim, T. Noh, Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching, Applied Physics Letters, 98 (2011) 033502.
    [87] W. Shen, R. Dittmann, R. Waser, Reversible alternation between bipolar and unipolar resistive switching in polycrystalline barium strontium titanate thin films, Journal of Applied Physics, 107 (2010) 094506.
    [88] K. Yin, M. Li, Y. Liu, C. He, F. Zhuge, B. Chen, W. Lu, X. Pan, R.-W. Li, Resistance switching in polycrystalline BiFeO3 thin films, Applied Physics Letters, 97 (2010) 042101.
    [89] C.-Y. Lin, D.-Y. Lee, S.-Y. Wang, C.-C. Lin, T.-Y. Tseng, Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices, Surface and Coatings Technology, 203 (2008) 628-631.
    [90] C.B. Lee, B.S. Kang, A. Benayad, M.J. Lee, S.-E. Ahn, K.H. Kim, G. Stefanovich, Y. Park, I.K. Yoo, Effects of metal electrodes on the resistive memory switching property of NiO thin films, Applied Physics Letters, 93 (2008) 042115.
    [91] L.-M. Chen, T.-Y. Lin, C.-C. Chang, S.-C. Chang, T.-S. Chin, Electrode effect on resistive switching of Ti-added amorphous SiOx films, Thin Solid Films, 518 (2010) 7352-7355.
    [92] H.Y. Jeong, J.Y. Lee, S.-Y. Choi, Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films, Applied Physics Letters, 97 (2010) 042109.
    [93] J.-K. Lee, J.-W. Lee, J. Park, S.-W. Chung, J.S. Roh, S.-J. Hong, I.-w. Cho, H.-I. Kwon, J.-H. Lee, Extraction of trap location and energy from random telegraph noise in amorphous TiOx resistance random access memories, Applied Physics Letters, 98 (2011) 143502.
    [94] J.Y. Son, Y.-H. Shin, C.S. Park, Bistable resistive states of amorphous SrRuO3 thin films, Applied Physics Letters, 92 (2008) 133510.
    [95] X.B. Yan, J. Yin, Z.G. Liu, X.Y. Xia, Studies on the reset power needed for the unipolar resistive switching in amorphous SrTiO3 − δ films induced by electrical pulse, Physics Letters A, 375 (2011) 3599-3603.
    [96] X. Wu, P. Zhou, J. Li, L.Y. Chen, H.B. Lv, Y.Y. Lin, T.A. Tang, Reproducible unipolar resistance switching in stoichiometric ZrO2 films, Applied Physics Letters, 90 (2007) 183507-183503.
    [97] B. Singh, B.R. Mehta, D. Varandani, A.V. Savu, J. Brugger, CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique, Nanotechnology, 23 (2012) 495707.
    [98] Y.S. Kim, J.-S. Kim, J.S. Choi, I.R. Hwang, S.H. Hong, S.-O. Kang, B.H. Park, Resistive switching behaviors of NiO films with controlled number of conducting filaments, Applied Physics Letters, 98 (2011) 192104.
    [99] Y. Wu, S. Yu, B. Lee, P. Wong, Low-power TiN/Al2O3/Pt resistive switching device with sub-20 μA switching current and gradual resistance modulation, Journal of Applied Physics, 110 (2011) 094104.
    [100] Y.H. Tseng, W.C. Shen, C.J. Lin, Modeling of electron conduction in contact resistive random access memory devices as random telegraph noise, Journal of Applied Physics, 111 (2012) 073701.
    [101] M.J. Lee, Y. Park, S.E. Ahn, B.S. Kang, C.B. Lee, K.H. Kim, W.X. Xianyu, I.K. Yoo, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, K.N. Choi, K.S. Chung, Comparative structural and electrical analysis of NiO and Ti doped NiO as materials for resistance random access memory, Journal of Applied Physics, 103 (2008) 013706.
    [102] K.-L. Lin, T.-H. Hou, Y.-J. Lee, J.-W. Chang, J.-H. Lin, J. Shieh, C.-T. Chou, T.-F. Lei, W.-H. Chang, W.-Y. Jang, Switching Mode and Mechanism in Binary Oxide Resistive Random Access Memory Using Ni Electrode, Japanese Journal of Applied Physics, 52 (2013) 031801.
    [103] H. Peng, T. Wu, Nonvolatile resistive switching in spinel ZnMn2O4 and ilmenite ZnMnO3, Applied Physics Letters, 95 (2009) 152106-152103.
    [104] K.M. Kim, B.J. Choi, B.W. Koo, S. Choi, D.S. Jeong, C.S. Hwang, Resistive Switching in Pt / Al2O3 / TiO2 / Ru Stacked Structures, Electrochemical and Solid-State Letters, 9 (2006) G343-G346.
    [105] Y. Du, A. Kumar, H. Pan, K. Zeng, S. Wang, P. Yang, A.T.S. Wee, The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy, AIP Advances, 3 (2013) 082107.
    [106] W. Zhu, X. Zhang, X. Fu, Y. Zhou, S. Luo, X. Wu, Resistive-switching behavior and mechanism in copper-nitride thin films prepared by DC magnetron sputtering, physica status solidi (a), 209 (2012) 1996-2001.
    [107] C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure, Applied Physics Letters, 100 (2012) 253509-253504.
    [108] Y. Shimeng, H.S.P. Wong, A Phenomenological Model for the Reset Mechanism of Metal Oxide RRAM, Electron Device Letters, IEEE, 31 (2010) 1455-1457.
    [109] C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure
    Applied Physics Letters, 100 (2012) 253509.
    [110] S. Hong, D.X. Long, I. Hwang, J.-S. Kim, Y.C. Park, S.-O. Kang, B.H. Park, Unipolar resistive switching mechanism speculated from irreversible low resistance state of Cu2O films, Applied Physics Letters, 99 (2011) 052105.
    [111] Y.M. Chiang, D.P. Birnie, W.D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, Wiley, 1996, 216.
    [112] F.E. Kame, P. Gonon, Impact of oxygen vacancy related defects on the electrical
    properties of BaTiO3 based metal–insulator–metal devices, Symposium G, E-MRS 2009 Spring Meeting, 8 (2010) 012030.
    [113] Y. Sharma, P. Misra, S.P. Pavunny, R.S. Katiyar, Multilevel unipolar resistive memory switching in amorphous SmGdO3 thin film, Applied Physics Letters, 104 (2014) 073501.
    [114] Z.T. Xu, K.J. Jin, L. Gu, Y.L. Jin, C. Ge, C. Wang, H.Z. Guo, H.B. Lu, R.Q. Zhao, G.Z. Yang, Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories, Small (Weinheim an der Bergstrasse, Germany), 8 (2012) 1279-1284.
    [115] U. Celano, Y. Yin Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, W. Vandervorst, Filament observation in metal-oxide resistive switching devices, Applied Physics Letters, 102 (2013) 121602.
    [116] G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, S. Seo, Observation of electric-field induced Ni filament channels in polycrystalline NiOx film, Applied Physics Letters, 91 (2007) 222103-222106.
    [117] H. Peng, T. Wu, Nonvolatile resistive switching in spinel ZnMn2O4 and ilmenite ZnMnO3, Applied Physics Letters, 95 (2009) 152106.
    [118] C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure, Applied Physics Letters, 100 (2012) 253509.

    無法下載圖示 全文公開日期 2019/07/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2019/07/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE