簡易檢索 / 詳目顯示

研究生: 邴國祥
Kuo-Hsiang Ping
論文名稱: 調控聚(丙烯腈-丙烯酸)共聚化學組成建構高效能滲透蒸發薄膜
Controlling the composition of Acrylonitrile/Acrylic acid Copolymer to Construct High Performance Pervaporation Membrane
指導教授: 胡蒨傑
Chien-Chieh Hu
口試委員: 賴君義
Juin-Yih Lai
李魁然
Kueir-Rarn Lee
洪維松
Wei-Song Hung
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 82
中文關鍵詞: 自由基聚合共聚高分子丙烯腈丙烯酸丙烯酸羥基乙酯複合膜滲透蒸發
外文關鍵詞: Free-radical polymerization, Copolymer, Acrylontrile, Acrylic acid, 2-Hydroxyethyl Acrylate, Composite membrane, Pervaporation
相關次數: 點閱:413下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜滲透蒸發分離是具有取代部分傳統蒸餾程序的低耗能新技術,滲透蒸發分離效能完全取決於薄膜的性能,因此,本研究探討調控共聚高分子的共聚單體組成以開發高效能的滲透蒸發薄膜為目標。研究利用自由基聚合反應(free-radical polymerization)進行丙烯睛(Acrylonitrile, AN)、丙烯酸(Acrylic acid, AA)單體共聚合,透過調控共聚單體比率控制共聚高分子的水親和性、膨潤性及微結構,共聚高分子(PANA)的產率約為0.7。研究中亦進行丙烯睛(Acrylonitrile, AN)、丙烯酸羥基乙酯(2-Hydroxyethyl acrylate, HEA)共聚合產生PANH共聚合物,PANH與PANA比較以了解親水分子鏈段改變對薄膜滲透蒸發效能的影響。為了增加共聚高分子薄膜的實用性,本研究結合乾式、濕式製膜法製作PANA/P84/PA複合薄膜。
    紅外光譜儀器、核磁共振儀器被用於鑑定共聚高分子的特定官能基,透過官能基分析得到PANA及 PANH共聚高分子的實際組成狀態,元素分析則得到實際高分子共聚物中丙烯腈、丙烯酸的莫爾分率,並確認PANA55與PANH55具有相似的共聚單體莫爾分率。熱重分析儀、微差示掃描熱卡計被用於分析共聚高分子的熱穩定性、玻璃轉移溫度。由膨潤度測試得知PANA共聚高分子中PAA含量增加有助於提升共聚物的膨潤性。X光繞射結果顯示AA共聚增加共聚合物的d-spacing。
    PANA55薄膜在70wt%異丙醇/水滲透蒸發測得通量920.7 g hr-1 m-2,透過物水濃度97.5%,比PAN薄膜通量高出8.9倍。PANH55薄膜在70wt%異丙醇水滲透蒸發測得通量564.8 g hr-1 m-2,透過物水濃度98.1%,相較同樣莫爾分率之PANA55有較低通量及較高選擇性。PANA55薄膜的變溫測試及變動進料組成測試證明,PANA55複合薄膜能在高溫、高水濃度下操作。


    Membrane pervaporation is a new technology with low energy consumption that can replace some traditional distillation operations. The separation efficiency of pervaporation completely depends on the performance of the membrane. Therefore, this work discusses the control of the co-monomer composition of the copolymer to develop high-efficiency pervaporation membranes. The free-radical polymerization reaction was used to copolymerize acrylonitrile and acrylic acid monomers named PANA, and the water affinity, swelling and microstructure of the copolymer were controlled by adjusting the co-monomer ratio. The yield of the copolymer was about 0.7. This work also copolymerize acrylonitrile and 2-Hydroxyethyl acrylate monomers named PANH, and compare with PANA to know the influence of pervaporation efficiency by hydrophility change. In order to increase the practicability of the copolymer membrane, the PANA/P84/PA composite membrane was fabricated by combining dry and wet methods.
    Infrared spectroscopy and nuclear magnetic resonance are used to identify specific functional groups in copolymers. The actual composition of PANA copolymers can be obtained through functional group analysis, and the molar fraction of acrylonitrile and acrylic acid in the actual polymer copolymers can be obtained through elemental analysis. It is confirmed that PANA55 and PANH55 have similar co-monomer molar ratio. Thermogravimetric analyzer and differential scanning calorimeter were used to analyze the thermal stability and glass transition temperature of copolymers. From the swelling degree test, it is known that the increase of PAA content in the PANA copolymer helps to improve the swelling of the copolymer. X-ray diffraction results show that the copolymerized of AA increases the d-spacing of the copolymer.
    Based on the pervaporation test, the flux of PANA55 membrane was 920. 7 g hr-1 m-2 and the water concentration in permeate was 97.5%, which was 8.9 times higher than that of the PAN membrane. In 70wt% IPA mixture pervaporation, the flux of PANH55 membranes was 564.8 g hr-1 m-2 and the water concentration in permeate was 98.1%, PANH55 got lower flux and higher selectivity. The variable temperature and variable feed composition test prove that the PANA55 composite membrane can operate at high temperature and high water concentration feed.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XIII 第一章 緒論 14 1.1 前言 14 1.2 薄膜分離技術 15 1.2.1 薄膜分離概述 15 1.2.2 薄膜應用概述 17 1.2.2.1 氣體分離 18 1.2.2.2 奈米過濾 18 1.2.2.3 滲透蒸發 18 1.3 薄膜種類及製備方式 20 1.3.1 薄膜種類概述 20 1.3.2 薄膜製備方式 20 1.3.2.1 乾式相轉換法 20 1.3.2.2 非溶劑誘導相轉化法 21 1.3.2.3 複合膜 21 1.4 滲透蒸發薄膜瓶頸及其克服方式 22 1.4.1 滲透蒸發的應用特性 22 1.4.2 兼顧通量與選擇性的薄膜 23 1.4.3 薄膜的穩定性 24 1.5 研究動機與目的 25 第二章 文獻回顧 27 第三章 實驗 38 3.1 實驗藥品及儀器介紹 38 3.1.1 實驗藥品 38 3.1.2 實驗器材 39 3.2 實驗架構 40 3.3 實驗步驟 41 3.3.1 共聚高分子製備 41 3.3.2 複合薄膜製備 44 3.3.3 性能鑑定裝置 45 3.3.3.1 元素分析儀(Elemental analysis, EA) 45 3.3.3.2 液態超導核磁共振儀(1H-NMR) 46 3.3.3.3全反射式傅立葉紅外光譜儀(FTIR-ATR) 46 3.3.3.4熱重分析儀(Thermogravimetric analysis, TGA) 46 3.3.3.5 差示掃描熱卡分析儀(Differential scanning calorimetry, DSC) 47 3.3.3.6 X光繞射儀(X ray diffraction, XRD) 47 3.3.3.7 膨潤度測試(Swelling degree test) 48 3.3.3.8 水接觸角(Water contact angle, WCA) 48 3.3.3.9 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 48 3.3.3.10 滲透蒸發儀器 49 第四章 結果與討論 52 4.1共聚高分子鑑定 52 4.1.1 共聚物合成及其產率 52 4.1.2 PANA共聚的組成 53 4.1.3 共聚組成對共聚物性質變化的影響 57 4.1.4 共聚物的親水性及膨潤度 60 4.1.5 薄膜結構鑑定 62 4.2 PANA共聚高分子薄膜滲透蒸發效能探討 64 4.2.1 PANA系列薄膜的滲透蒸發效能 64 4.2.2 進料組成變化對PANA55薄膜滲透蒸發效能的影響 66 4.2.3 PANA55薄膜的變溫測試 67 4.2.4 PANA55對不同醇類的滲透蒸發效能 69 4.2.5 PANA55的長效測試 71 第五章 總結 73 參考文獻 75

    [1]賴君義,薄膜科技概論,五南出版社,2019.
    [2] C.C. Hu, H.H. Yeh, C.P. Hu, R.L.G. Lecaros, C.C. Cheng, W.S. Hung, H.A. Tsai, K.R. Lee, J.Y. Lai, The influence of intermediate layer and graphene oxide modification on the CO2 capture efficiency of Pebax-GO/PDMS/PSf mixed matrix composite membranes, Journal of the Taiwan Institute of Chemical Engineers, 135 (2022) 104379.
    [3] M.B.M.Y. Ang, C.A. Trilles, M.R.De Guzman, M. Pereira, R.R. Aquino, S.H. Huang, C.C. Hu, K.R. Lee, J.Y. Lai, Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles, Separation and Purification Technology, 224 (2019) 113-120.
    [4] Y.J. Fu, C.H. Lai, J.T. Chen, C.T. Liu, S.H. Huang, W.S. Hung, C.C. Hu, K.R. Lee, Hydrophobic composite membranes for separating of water–alcohol mixture by pervaporation at high temperature, Chemical Engineering Science, 111 (2014) 203-210.
    [5] N. Abdehagh, F.H. Tezel, J. Thibault, Separation techniques in butanol production: Challenges and developments, Biomass and Bioenergy, 60 (2014) 222-246.
    [6] C.A. Sarabia, D.G. Revuelta, M. Fallanza, A. Ortiz, D. Gorri, Polyether-block-amide thin-film composite hollow fiber membranes for the recovery of butanol from ABE process by pervaporation, Separation and Purification Technology, 279 (2021) 119758.
    [7] M.E. Dmitrenko, A.V. Penkova, A.B. Missyul, A.I. Kuzminova, D.A. Markelov, S.S. Ermakov, D. Roizard, Development and investigation of mixed-matrix PVA-fullerenol membranes for acetic acid dehydration by pervaporation, Separation and Purification Technology, 187 (2017) 285-293.
    [8] M.Q Wang, X. Cheng, G.J. Jiang, J.Y. Xie, W.B. Cai, J.D. Li, Y.J. Wang, Preparation and pervaporation performance of PVA membrane with biomimetic modified silica nanoparticles as coating, Journal of Membrane Science, 653 (2022) 120535.
    [9] H. Staudinger, J. Fritschi, Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution, Helvetica, 5 (1922) 785-806.

    [10] L. Guo, Z. Liang, L. Yang, W. Du, T. Yu, H. Tang, C. Li, H. Qiu, The role of natural polymers in bone tissue engineering, Journal of Controlled, 338 (2021) 571-582.
    [11] J. Chu, H. Wang, Y. Zhang, Z. Li, Z. Zhang, H. He, Q. Zhang, F. Xu, Design and synthesis of gradient-refractive index isosorbide-based polycarbonates for optical uses, Reactive and Functional Polymers, 170 (2022) 105145.
    [12] J. Singh, K. Chawl, R. Singh, Applications of thermoplastic polymers in 3D printing, encyclopedia of materials: Plastics and Polymers, 1 (2022) 23-32.
    [13] K.S. Boparai, A. Kumar, Thermosetting polymers as scaffold applications, encyclopedia of materials: Plastics and Polymers, 1 (2022) 588~595.
    [14] G. Fu, B. Shannon, R. Azoor, R. Deo, J. Kodikara, Equations for gap-spanning design of underground cast iron pipes lined with thermosetting polymeric liners, Tunnelling and Underground Space Technology, 119 (2022) 104234.
    [15] X. Shi, D. Soule, Q. Ge, H. Lu, K. Yu, Evolution of material properties during the solvent-assisted recycling of thermosetting polymers: to reduce the residual stress and material inhomogeneity, Materials Today Sustainability, 19 (2022) 100167.
    [16] T. Zhang, J. Li, X. Wu, D. Wamg, S. Zhou, S. Han, H. Wang, F. Sun, Simultaneously reinforcing and toughening of shape-memory epoxy resin with carboxylated lignosulfonate: Facile preparation and effect mechanism, International Journal of Biological Macromolecules, 217 (2022) 243-254.
    [17]S. Fu, C.M. Rempson, V. Puche, B. Zhao, F. Zhang, Construction of disulfide containing redox-responsive polymeric nanomedicine, Methods, 199 (2022) 67-79.
    [18]H.P. Shah, O. Cohen, J. Sukys, J. Dibble, S. Mehra, The impact of frailty on adjuvant treatment in patients with head and neck free flap reconstruction—A retrospective study using two independent frailty scores, Oral Oncology, 132 (2022) 106006.
    [19] A. Hu, J. Huang, Y. Zhang, Q. Yang, Z. Zhang, L. Yang, S. Hirano, In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries, Chemical Engineering Journal, 448 (2022) 137661.

    [20] H.G. Redda, Y. Nikodimos, W.N. Su, R.S. Chen, S.K. Jiang, L.H. Abrha, T.M. Hagos, H.K. Bezabh, H.H. Weldeyohannes, B.J. Huang, Enhancing the electrochemical performance of a flexible solid-state supercapacitor using a gel polymer electrolyte, Materials Today Communications, 26 (2021) 102102.
    [21] J. Xu, Z. Deng, B. Wu, M. Lin, D. Chen, Synthesis and characterization of viologen functionalized fluorene-containing poly(arylene ether ketone)s for polymer batteries, Electrochimica Acta, 423 (2022) 140556.
    [22] D. Zorko, J. Tavcar, M. Bizjak, R. Sturm, Z. Bergant, High cycle fatigue behaviour of autoclave-cured woven carbon fibre-reinforced polymer composite gears, Polymer Testing, 102 (2021) 107339.
    [23] R. Yadav, M. Tirumail, X. Wang, M. Naebe, B. Kandasubramanian, Polymer composite for antistatic application in aerospace, Defence Technology, 16 (2020) 107-118.
    [24] C. Cao, J. Lu, X. Xia, X. Shen, Y. Qiu, C. Kuang, X. Liu, Click chemistry assisted organic-inorganic hybrid photoresist for ultra-fast two-photon lithography, Additive Manufacturing, 51 (2022) 102658.
    [25] Y. Ding, Y. Xin, Q. Zhang, Y. Zou, Acrylic resins with oxetane pendant groups for free radical and cationic dual-curing photoresists, Materials&Design, 213 (2022) 110370.
    [26] M. Zhang, S. Jiang, Y. Gao, J. Nie, F. Sun, Design of a disulfide bond-containing photoresist with extremely low volume shrinkage and excellent degradation ability for UV-nanoimprinting lithography, Chemical Engineering Journal, 390 (2020) 124625.
    [27] P.C. Painter, M.M. Coleman, Fundamentals of Polymer Science, 2nd edition (2019).
    [28] X. Solimando, J. Babin, C.A. Herault, D. Roizard, D. Barth, M. Poncot, I. Royaud, P. Alcouffe, L. David, A. Jonquieres, Controlled grafting of multi-block copolymers for improving membrane properties for CO2 separation, Polymer, 255 (2022) 125164.
    [29] W.T. Du, S.W. Kuo, Varying the sequence distribution and hydrogen bonding strength provides highly Heat-Resistant PMMA copolymers, European Polymer Journal, 170 (2022) 111165.
    [30] V.C. Broto, Urban governance and the politics of climate change, World Development, 93 (2017) 1-15

    [31]J. Widakdo, T.J. Huang, T.M. Subrahmanya, H.F.M. Austria, H.L. Chou, W.S. Hung, C.F. Wang, C.C. Hu, K.R. Lee, J.Y. Lai, Bioinspired ionic liquid-graphene based smart membranes with electrical tunable channels for gas separation, Applied Materials Today, 27 (2022) 101441.
    [32] D.L. Keshebo, C.P. Hu, C.C. Hu, W.S. Hung, C.F. Wang, H.C. Tsai, K.R. Lee, J.Y. Lai, Effect of composition of few-layered transition metal dichalcogenide nanosheets on separation mechanism of hydrogen selective membranes, Journal of Membrane Science, 634 (2021) 119419.
    [33] C.C. Hu, C.Y. Wang, M.C. Tsai, R.L.G. Lecaros, W.S. Hung, H.A. Tsai, K.R. Lee, J.Y. Lai, Polyimide/Cu-doped TiO2 Janus membranes for direct capture and photocatalytic reduction of carbon dioxide from air, Chemical Engineering Journal, 450 (2022) 138008.
    [34] X. Zhu, Z. Yu, J. Wang, P. Wang, X. Li, R. Long, Q. Wang, Chemically stable NH2-MIL-125(Ti)/Sep/PDA composite membranes with high-efficiency for oil/water emulsions separation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 645 (2022) 128999.
    [35] Z. Gao, X. Gu, C. Liu, Z. Zhang, H. Shao, Q. Zhang, M. Long, X. Guo, An internal electrostatic force-driven superoleophilic membrane-magnetic nanoparticles coupling system for superefficient water-in-oil emulsions separation, Journal of Membrane Science, 660 (2022) 120842.
    [36] X. Xu, Y. Yang, T. Liu, B. Chu, Cost-effective polymer-based membranes for drinking water purification, Giant, 10 (2022) 100099.
    [37] Z.Y. Zhang, J.F. Gou, X.Y. Zhang, Z.Q. Wang, N. Xue, G. Wang, R. Sabetvand, D. Toghrai, Molecular dynamics simulation6 membrane performance in an aqueous environment for water purification, Journal of Water Process Engineering, 47 (2022) 102678.
    [38] Y. Sugawara, S. Amamiya, T. Yamaguchi, Comprehensive simulation to uncover the ideal properties of a hollow fiber forward osmosis membrane module for the seawater desalination process, Desalination, 538 (2022) 115923.
    [39] M. Quilaqueo, G. Seriche, L. Barros, C. González, J. Romero, R.R. Figueroa, S. Santoro, E. Curcio, H. Estay, Water recovery assessment from hypersaline lithium-rich brines using membrane distillation-crystallization, Desalination, 537 (2022) 115887.
    [40] H. Zheng, M. Yoshikawa, Molecularly imprinted cellulose membranes for pervaporation separation of xylene isomers, Journal of Membrane Science, 478 (2015) 148-154.

    [41] A.Y. Pulyalinа, G.A. Polotskaya, К.Y. Veremeychik, M.Y. Goikhman, I.V. Podeshvo, A.M. Toikka, Ethanol purification from methanol via pervaporation using polybеnzoхazinonеimidе membrane, Fuel Processing Technology, 139 (2015) 178-185.
    [42] A. Banerjee, S.K. Ray, Synthesis of chitosan grafted polymethyl methacrylate nanopolymers and its effect on polyvinyl chloride membrane for acetone recovery by pervaporation, Carbonate Polymers, 258 (2021) 117704.
    [43] X. Xu, Y. Hartanto, Z. He, S. Chergaoui, P. Luis, High-performance ZIF-8/biopolymer chitosan mixed-matrix pervaporation membrane for methanol/dimethyl carbonate separation, Separation and Purification Technology, 293 (2022) 121085.
    [44] L.G. Peeva, E. Gibbins, S.S. Luthra, L.S. White, R.P. Stateva, A.G. Livingston, Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration, Journal of Membrane Science, 236 (2004) 121-136.
    [45] C.A. Hejase, V.V. Tarabara, Nanofiltration of saline oil-water emulsions: Combined and individual effects of salt concentration polarization and fouling by oil, Journal of Membrane Science, 617 (2021) 118607.
    [46] S. Maninani, A.A. Shimmery, Y.M.J. Chew, D. Mattia, 3D printed nanofiltration composite membranes with reduced concentration polarization, Journal of Membrane Science, 644 (2022) 120137.
    [47] X. Su, W. Li, A. Palazzolo, S. Ahmed, Concentration polarization and permeate flux variation in a vibration enhanced reverse osmosis membrane module, Desalination, 433 (2018) 75-88.
    [48] A. Srivastava, R. Singh, V.D. Rajput, T. Minkina, S. Agarwal, M.C. Garg, A systematic approach towards optimization of brackish groundwater treatment using nanofiltration (NF) and reverse osmosis (RO) hybrid membrane filtration system, Chemosphere, 303 (2022) 135230.
    [49] H. Zhang, S. Cheng, F. Yang, Use of a spacer to mitigate concentration polarization during forward osmosis process, Desalination, 347 (2014) 112-119.
    [50] S. Li, J. Wang, Y. Guan, J. Miao, R. Zhai, J. Wu, Y. Hu, Construction of pseudo-zwitterionic polyamide RO membranes surface by grafting positively charged small molecules, Desalination, 537 (2022) 115892.

    [51] A. Srivastava, A. K, A. Nair, S. Ram, S. Agarwal, J. Ali, R. Singh, M. C. Garg, Response surface methodology and artificial neural network modelling for the performance evaluation of pilot-scale hybrid nanofiltration (NF) & reverse osmosis (RO) membrane system for the treatment of brackish ground water, Journal of Environmental Management, 278 (2021) 111497.
    [52] F. Elazhar, M. Elazhar, S.E. Ghzizel, M. Tahaikt, M. Zait, D. Dhiba, A. Elmidaoui, M. Taky, Nanofiltration-reverse osmosis hybrid process for hardness removal in brackish water with higher recovery rate and minimization of brine discharges, Process Safety and Environmental Protection, 153 (2021) 376-383.
    [53] C. T, Y.L. Liu, Creation of water-permeation pathways with matrix-polymer functionalized carbon nanotubes in polymeric membranes for pervaporation desalination, Journal of Membrane Science Letters, 2 (2022) 100027.
    [54] J. Sun, W. Jia, J.X. Guo, N.K. Khanzada, P.R. Jin, P. W. Wong, X. Zhang, A.K. An, Amino-embedded carbon quantum dots incorporated thin-film nanocomposite membrane for desalination by pervaporation, Desalination, 533 (2022) 115742.
    [55] J. Wang, B. Cao, R. Zhang, P. Li, Spray-coated tough thin film composite membrane for pervaporation desalination, Chemical Engineering Research and Design, 179 (2022) 493-501.
    [56] A.V. Penkova, S.F.A. Acquah, M.E. Dmitrenko, M.P. Sokolova, M.Е. Mikhailova, E.S. Polyakov, S.S. Ermakov, D.A. Markelov, D. Roizard, Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nanoparticles, Materials & Design, 96 (2016) 416-423.
    [57] M.E. Dmitrenko, A.V. Penkova, A.I. Kuzminova, M. Morshed, M.I. Larionov, H. Alem, A.A. Zolotarev, S.S. Ermakov, D. Roizard, Investigation of new modification strategies for PVA membranes to improve their dehydration properties by pervaporation, Applied Surface Science, 450 (2018) 527-537.
    [58] R.C. Muñoz, J.B. González, Ó. Iglesia, F. Galiano, V. Fíla, M. Malankowska, C. Rubio, A. Figoli, C. Téllez, J. Coronas, Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes, Journal of Membrane Science, 582 (2019) 423-434.

    [59] X.P. He, T. Wang, J.H. Huang, J.X. Chen, J.D. Li, Fabrication and characterization of superhydrophobic PDMS composite membranes for efficient ethanol recovery via pervaporation, Separation and Purification Technology, 241 (2020) 116675.
    [60] G.J. Zhang, N.X. Wang, H.W. Fan, R. Zhang, G.J. Zhang, S. Ji, Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles, Journal of Membrane Science, 492 (2015) 322-330.
    [61] Y. Pan, T.Y. Zhu, Q. Xia, X. Yu, Y. Wang, Constructing superhydrophobic ZIF-8 layer with bud-like surface morphology on PDMS composite membrane for highly efficient ethanol/water separation, Journal of Environmental Chemical Engineering, 9 (2021) 104977.
    [62]L. Zhang, Y.W. Li, Q. Liu, W.X. Li, W.H. Xing, Fabrication of ionic liquids-functionalized PVA catalytic composite membranes to enhance esterification by pervaporation, Journal of Membrane Science, 584 (2019) 268-281.
    [63] H.P. Zhu, X.R. Li, Y. Pan, G.P. Liu, H. Wu, M. Liang, W.Q. Jin, Fluorinated PDMS membrane with anti-biofouling property for in-situ biobutanol recovery from fermentation-pervaporation coupled process, Journal of Membrane Science , 609 (2020) 118225.
    [64] L.I. Atanase, C. Larraya, J.F. Tranchant, M. Save, Rational design of tetrahydrogeraniol-based hydrophobically modified poly(acrylic acid) as emulsifier of terpene-in-water transparent nanoemulsions, European Polymer Journal, 94 (2017) 248-258.
    [65] N. Sabzroo, T.R. Bastami, M. Karimi, T. Heidari, S. Agarwal, V.K. Gupta, Synthesis and characterization of magnetic poly(acrylonitrile-co-acrylic acid) nanofibers for dispersive solid phase extraction and pre-concentration of malachite green from water samples, Journal of Industrial and Engineering Chemistry, 60 (2018) 237-249.
    [66] M.S. Oak, T. Kobayashi, H.Y. Wang, T. Fukaya, N.Fujii, pH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups, Journal of Membrane Science, 123 (1997) 185-195.
    [67] J. Mittal, O.P. Bahl, R.B. Mathur, N.K. Sandle, IR studies of PAN fibres thermally stabilized at elevated temperatures, Carbon, 32 (1994) 1133-1136.

    [68] I. Shimada, T. Takahiki, FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers, Polymer Chemistry, 24 (1986) 1725-2031.
    [69] R.H. Gerke, Second-order transition temperature of butadiene copolymers, Journal of Polymer Science, 13 (1954) 295-300.
    [70] H.S. Mahmood, M.K. Jawad, Antibacterial activity of chitosan/PAN blend prepared at different ratios, AIP Conference Proceedings, 2190 (2019) 020078.
    [71] S. Moulay, N. Bensacia, Removal of heavy metals by homolytically functionalized poly(acrylic acid) with hydroquinone, International Journal of Industrial Chemistry, 7 (2016) 369-389.
    [72] M.H. Sadeghi, H.R. Mortaheb, K.T. Heidar, F. Gallucci, Dehydration of isopropanol by poly(vinyl alcohol) hybrid membrane containing oxygen-plasma treated graphene oxide in pervaporation process, Chemical Engineering Research and Design, 183 (2022) 318-330.
    [73] E.G.Janzen, J.I.P.Liu, Radical addition reactions of 5,5-Dimethyl-1-pyrroline-1-oxide. ESR spin trapping with a cyclic nitrone, Journal of Magnetic Resonance, 9 (1973) 510-512.
    [74] H. Fang, C.A.Guymon, Thermo-mechanical properties of urethane acrylate networks modulated by RAFT mediated photopolymerization, Polymer, (2022) 125197.
    [75] D.V.H. Thien, D.N. Lam, H.N. Diem, T.Y.N.Pham, N.Q.Bui, T.N. T.Truc, D.T.V.Pham, Synthesis of cellulose-g-poly(acrylic acid) with high water absorbency using pineapple-leaf extracted cellulose fibers, Carbohydrate Polymers, 288 (2022) 119421.

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 2025/08/29 (校外網路)
    全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE