簡易檢索 / 詳目顯示

研究生: 郭翰
Han Guo
論文名稱: 無感測器之阻抗控制 應用於Delta機械臂
Sensorless Impedance Control of Delta Robot
指導教授: 劉孟昆
Meng-Kun Liu
藍振洋
Zhen-Yang Lan
口試委員: 劉孟昆
Meng-Kun Liu
藍振洋
Zhen-Yang Lan
郭俊良
Jun-Liang Guo
陳羽薰
Yu-Xun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 71
中文關鍵詞: 外力估測器阻抗控制系統識別碰撞偵測Delta機械臂
外文關鍵詞: external force estimator, impedance control, system identification, collision detection, Delta robot
相關次數: 點閱:332下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著工業機械臂的應用增加,力量控制越來越受到重視,而這類力量控制也稱為順應性控制(compliant control),順應性控制中又以阻抗控制(impedance control)最為常見。但一般的順應性控制需安裝價格不菲的力量感測器,大幅增加了此類力覺機械臂的建置成本。因此,以估測的方法取代力量感測器的方法也相繼被提出,其中又以干擾估測器(disturbance observer, DOB)最為廣用,但多用於串聯式及低自由度的機械臂中,對於並聯式機械臂的使用效果還待進一步探討。本研究將DOB使用在Delta並聯式機械臂的外力估測,其效果未如預期。因此本研究提出了一種新的外力估測方法,以阻抗控制為基礎架構,搭配系統識別(system identification, SID)及反向阻抗的概念,提出了一套不需力量感測器且可用於Delta並聯式機械臂的力量控制架構。以模擬及本研究自行設計開發的Delta機械臂驗證了所提出無感測器力量控制架構的可行性,並將此控制方法實際應用於碰撞偵測(collision detection)且得到了良好的結果。


With the increased utilization of industrial manipulators, the force control is gaining more and more attention and appreciation. The force control is also known as the compliant control. Among all proposed techniques, impedance control is the most commonly used method. The compliant control is very useful and effective especially in the situation of interaction with robots and humans, but it fundamentally requires installation of the force sensor to obtain the external force value as feedback signal. This drastically increases the cost of the implementation of such a haptic manipulator. Therefore, many researchers have proposed estimation methods to estimate the external force. Those estimation methods ease the requirement of the force sensor. The disturbance observer (DOB) is the most widely used, but has mainly applied to the series manipulator or low D.O.F. robot arms. On the other hand, the effectiveness and the performance of the force estimation applying to parallel manipulators are still not been investigated thoroughly. In this study, the external force estimation performance of DOB on the Delta robot is not as expected. Thus, a sensor-less impedance control method based on system identification (SID) and the concept of inverse objective impedance is proposed and applied. The proposed method was verified via simulation and experiments with satisfactory performance. This control scheme also applied to Delta robot for collision detection with pleasing result.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1前言 1 1.2 文獻回顧及研究動機 3 1.3 本文貢獻及架構 5 第二章 DELTA機械臂設計 6 2.1 Delta機械臂結構設計 6 2.2 Delta機械臂結構強度分析 9 第三章 DELTA機械臂數學模型 13 3.1 運動學分析 15 3.1.1 位置分析 15 3.1.2 速度與加速度分析 17 3.2 動力學分析 18 3.3 工作空間 23 3.4 系統參數識別 24 第四章 DELTA機械臂控制架構 25 4.1 計算力矩法 25 4.2 阻抗控制 26 4.3 外力估測器 27 第五章 模擬與實驗結果 28 5.1 實驗架設 30 5.2 實驗一:DELTA機械臂參數識別與循跡控制 36 5.3 實驗二:DELTA機械臂外力估測 42 5.4 實驗三:DELTA機械臂阻抗控制 45 5.5 實驗四:DELTA機械臂碰撞偵測 49 第六章 結論與未來展望 51 6.1結論 51 6.2 未來展望 52 參考文獻 54 附錄A 系統參數識別-扭矩曲線擬合 56

[1] A. M.Andrew, “Robo Sapiens: Evolution of a New Species,” Kybernetes. 2001.
[2] R.CLAVEL, “Delta, a fast robot with parallel geometry,” 1988.
[3] A.Calanca, R.Muradore, andP.Fiorini, “A review of algorithms for compliant control of stiff and fixed-compliance robots,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 613–624, 2016.
[4] M. H.Raibert andJ. J.Craig, “Hybrid Position/Force Control of Manipulators,” J. Dyn. Syst. Meas. Control, vol. 103, no. 2, p. 126, 2009.
[5] N.Hogan, “Impedance Control: An Approach to Manipulation,” 1984.
[6] P.Song, Y.Yu, andX.Zhang, “A Tutorial Survey and Comparison of Impedance Control on Robotic Manipulation,” 2019.
[7] A.Codourey, R.Clavel, andC. W.Burckhardt, “Control Algorithm and Controller for the Direct Drive Delta Robot,” IFAC, 1992.
[8] H.Asada andT.Kanade, “Control of a Direct-Drive Arm,” 1983.
[9] J.Brinker, B.Corves, andM.Wahle, “A Comparative Study of Inverse Dynamics based on Clavel ’s Delta robot,” 2015.
[10] A.Codourey, “Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation,” Int. J. Rob. Res., vol. 17, no. 12, pp. 1325–1336, 1998.
[11] T.Murakami, R.Nakamura, F.Yu, andK.Ohnishi, “Force sensorless impedance control by disturbance observer,” Proc. Power Convers. Conf. - Yokohama 1993, no. l, pp. 352–357, 1993.
[12] K.SAIKI, A. S. R.LIZA, S.TORITANI, andK.NONAMI, “Force Sensorless Impedance Control of Dual-Arm Manipulator-Hand System,” J. Syst. Des. Dyn., vol. 5, no. 5, pp. 953–965, 2011.
[13] S.Oh, H.Woo, andK.Kong, “Frequency-shaped impedance control for safe human-robot interaction in reference tracking application,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 6, pp. 1907–1916, 2014.
[14] J. H.Choi, J. H.Kwak, J.An, andS.Oh, “Force Sensorless Multi-functional Impedance Control for Rehabilitation Robot,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 12077–12082, 2017.
[15] A.Flores-Abad, M.Nandayapa, andM. A.Garcia-Teran, “Force sensorless impedance control for a space robot to capture a satellite for on-orbit servicing,” IEEE Aerosp. Conf. Proc., vol. 2018-March, pp. 1–7, 2018.
[16] A.Codourey, “Contribution à la commande des robots rapides et précis,” Dmt, no. 922 (1991), 1991.
[17] E. G.Papadopoulos andG. C.Chasparis, “Analysis and Model-Based Control of Servomechanisms With Friction,” J. Dyn. Syst. Meas. Control, vol. 126, no. 4, p. 911, 2005.
[18] M.Gautier andP.Poignet, “Extended Kalman filtering and weighted least squares dynamic identification of robot,” Control Eng. Pract., vol. 9, no. 12, pp. 1361–1372, 2001.
[19] J. L.Crassidis andJ. L.Junkins, Optimal Estimation of Dynamic Systems. 2011.
[20] Wen-Hua Chen, D. J.Ballance, P. J.Gawthrop, J. J.Gribble, andJ.O’Reilly, “A nonlinear disturbance observer for two link robotic manipulators,” 2003.
[21] A.Mohammadi, M.Tavakoli, H. J.Marquez, andF.Hashemzadeh, “Nonlinear disturbance observer design for robotic manipulators,” Control Eng. Pract., vol. 21, no. 3, pp. 253–267, 2013.

無法下載圖示 全文公開日期 2024/08/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE