簡易檢索 / 詳目顯示

研究生: 闕子晨
Tzu-Chen Chueh
論文名稱: 五自由度機械手臂之開發與力量控制應用
Development of a Five-axis Robot and the Applications to Force Control
指導教授: 陳亮光
Liang-Kuang Chen
口試委員: 修芳仲
Fang-Jung Shiou
鄧昭瑞
Geo-Ry Tang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 93
中文關鍵詞: 自動化拋光拋光路徑力量控制阻抗控制機械手臂
外文關鍵詞: Automatic Polishing, Polishing Trajectory, Force Control, Impedance Control, Manipulator
相關次數: 點閱:259下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拋光作業能使工件維持原本尺寸並降低工件本身表面粗糙度,是加工生產中重要的一步。但目前的人工拋光作業需要大量的人力及時間成本,而且執行拋光作業的環境會危害人體健康,故本研究開發出一套以機械手臂代替人工的自動化拋光系統。礙於市面上的工業型機械手臂控制系統無法更改底層程式,因此本研究將自行開發出一台五軸機械手臂。使用SolidWork軟體搭配機器人學理論設計製作五自由度串聯式機械手臂,並自製馬達驅動板以及馬達解碼電路板,再以PID控制作為位置控制,搭配 Arduino做為控制核心。
    本實驗利用CAD/CAM軟體設計欲拋光工件並模擬拋光加工路徑,獲得拋光面之表面點資料,最後利用座標轉換方法獲得機械手臂拋光路徑。再利用機械手臂進行拋光作業,並加入力量控制,本研究所使用之力量控制法為阻抗控制,將機械手臂以固定力量下進行拋光。最後利用表面粗糙度量測系統量測工件,並比較無力量控制及有力量控制拋光結果。


    Polishing is the process of creating a smooth and shiny surface. It is an important procedure for machine processing. However, the current manual polishing operations require lots of personnel and time costs, and the environment of polishing operation will endanger human health. Therefore, this study developed an automatic polishing system instead of artificial. But the industrial manipulator on the market isn’t altered the program. So a five degree of freedom (DOF) manipulator was designed and manufactured firstly in this thesis. And use SolidWork and robotics to manufacture manipulator. The motor driver and motor decoder built to control the joint motion by PID control. The overall control system was control on Arduino board and calculated by computer.
    Derive the polishing path that will be used as the tracking command for the manipulator, from the CAD/CAM software using the workpiece geometry to obtain the simulated cutting path. And use transformation of coordinates to derive the polishing path. And force control is adopted to manipulate the force of manipulator during the polishing operations. The force control is impedance control in this thesis. Finally compare the surface roughness.

    Abstract IV 誌謝 V 目錄 VI 圖索引 IX 表索引 XII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 4 1.2.1機械手臂拋光 4 1.2.2軌跡規劃 4 1.2.3順應性控制 5 1.2.4阻抗控制 7 1.2.5模型預估控制和重複控制 8 1.3研究目的與動機 9 1.4論文架構 10 第二章 系統架構 11 2.1機械手臂系統 11 2.1.1第一軸機構設計 13 2.1.2第二、三軸機構設計 14 2.1.3第四、五軸機構設計 17 2.2手臂致動系統 20 2.2.1手臂致動器 20 2.2.2二、三軸馬達驅動板 21 2.2.3半橋驅動電路 24 2.2.4第一、四、五軸馬達驅動L298N 26 2.3馬達解碼電路 27 2.4配重平衡系統 30 2.5系統架構 32 第三章 機械手臂運動學分析 35 3.1齊次矩陣 35 3.1.1平移矩陣 35 3.1.2旋轉矩陣 36 3.2正向運動學 37 3.3機械手臂運動範圍 40 3.4反運動學 43 第四章 控制理論 46 4.1阻抗控制基本理論 46 4.2機械手臂位置為基礎之阻抗控制 48 4.3位置控制 50 第五章 實驗方法與結果 53 5.1 實驗硬體架構 53 5.1.1力量感測器 53 5.1.2拋光模組 54 5.2 實驗流程 55 5.3 拋光力量控制 57 5.4 實驗結果與分析 63 第六章 結論與未來展望 70 6.1結論 70 6.2未來展望 71 參考文獻 72 附錄 A 76 附錄 B 79 附錄 C 80

    [1]精銳科技股份有限公司,http://www.apexdyna.com
    [2]上銀科技股份有限公司,http://www.hiwin.tw
    [3]台達電子股份有限公司,http://www.deltaww.com
    [4]電裝公司(DENSO CORPORATION),http://www.denso.com.tw
    [5]王治平,「主動式力量控制器研究」,淡江大學,機械工程研究所,碩士,民國86年。
    [6]Nagata, F., Watanabe, K. and Izumi, K., “Furniture Polishing Robot Using a Trajectory Generator Based on Cutter Location Data,” IEEE International Conference on Robotics and Automation, Vol.1, pp. 319 – 324, 2001.
    [7]Nagata, F., Tani, S., Mizobuchi, T., Hase, T., Haga, Z., Omoto, M. and Watanabe, K., “Orthogonal-type Robot with a CAD/CAM-based Position/Force Controller,” IEEE Symposium on Computational Intelligence in Control and Automation, pp.1-6, Mar. 2009.
    [8]Dong, Z., Chao, Y., Dezheng, S., Xiaodong, L., and Xiaozhi, W., “Design and Application for Robotic Polishing System,” Mechanic Automation and Control Engineering, pp. 2470-2474, 2010.
    [9]Lin, R. S., “Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools,” International Journal of Machine Tools and Manufacture, 40(10), 1513-1526, 2000.
    [10]周啟維,「自由曲面之建立及其精確度之研究」,國立交通大學,機械工程研究所,碩士,民國79年。
    [11]Lo, C. C., “CNC machine tool surface interpolator for ball-end milling of free-form surfaces,” International journal of machine tools and manufacture, 40(3), 307-326, 2000.
    [12]黃宏龍,「以NC建模並考慮磨耗率之自動化精密拋光研究」,國立成功大學,機械工程研究所,碩士,民國89年。
    [13]陳科鈞,「使用機械手臂進行拋光加工之研究」,長庚大學,機械工程研究所,碩士,民國95年。
    [14]鄭建志,「機械手臂加工後處理程式之研究」,國立勤益科技大學,資訊管理系,碩士,民國100年。
    [15]Whitney, D. E., “Quasi-static Assembly of Compliantly Supported Rigid Parts,” Journal of Dynamic Systems, Measurement, and Control, Vol. 104, No.1, pp.65-77, 1982.
    [16]Zeng, G. and Hemami, A., “An Overview of Robot Force Control,” Robotica, Vol. 15, pp.473-482, 1997.
    [17]Paul, R. and Shimano, B., “Compliance and Control,” Proceedings of the Joint Automatic Control Conference, pp.694-699, 1976.
    [18]Craig, J.J. and Raibert, M., “A Systematic Method of Hybrid Position/Force Control of a Manipulator,” IEEE Computer Society's Third International on Computer Software and Applications Conference, pp.446 – 451, 1979.
    [19]Mason, M. T., “Compliance and Force Control for Computer Controlled Manipulators,” IEEE Transactions on Systems, Man and Cybernetics, SMC-1, pp.418-432, 1918.
    [20]陳漢雄,「機械手臂混合位置/阻抗控制之研究」,國立臺灣科技大學,自動化及控制研究所,碩士,民國98年。
    [21]郭思賢,「機械手臂於拋光作業之力量與循跡控制探討」,國立台灣科技大學,機械工程系,碩士,民國104年。
    [22]Hogan, N., “Impedance Control: An Approach to Manipulation,” American Control Conference, 1984.
    [23]Anderson, R. J., and Spong, M. W., “Hybrid Impedance Control of Robotic Manipulators,” IEEE Journal on Robotics and Automation, Vol.4, No.5, pp.549-556, 1988.
    [24]Gonzalez, J. J., and Widmann, G. R., “A Force Commanded Impedance Control Scheme for Robots with Hard Nonlinearities,” IEEE Transactions on Control Systems Technology, Vol.3, No.4, pp.398-408, 1995.
    [25]Jung, S., Hsia, T. C., and Bonitz, R. G., “Force Tracking Impedance Control of Robot Manipulators under Unknown Environment,” IEEE Transactions on Control Systems Technology, Vol.12, No.3, pp.474-483, 2004.
    [26]易春億,「具力回饋及阻抗控制之機器人手臂研究」,國立臺灣大學,機械工程學研究所,碩士,民國99年。
    [27]Richalet, J., Rault, A., Testud, J. L., and Papon, J., “Model Predictive Heuristic Control,” Applications to industrial processes, Vol.14, pp.413-428, 1978.
    [28]Camacho, E. F. and Alba, C. B., Model Predictive Control. Springer Science & Business Media, 2013.
    [29]Incremona, G. P., Ferrara, A., and Magni, L., “MPC for Robot Manipulators with Integral Sliding Modes Generation,” IEEE/ASME Transactions on Mechatronics, 2017.
    [30]Poignet, Ph., and Gautier, M., “Nonlinear Model Predictive Control of a Robot Manipulator”, Advanced Motion Control, 2000. Proceedings. 6th International Workshop on. IEEE, 2000.
    [31]Inoue, T. K. S. M. T., Nakano, M., Kubo, T., Matsumoto, S. and Baba, H., “High Accuracy Control of a Proton Synchrotron Magnet Power Supply,” IFAC Proceedings, Vol. 14, No. 2, pp. 3137-3142, 1981.
    [32]Francis, B. A. and Wonham, W. M., “The Internal Model Principle for Linear Multivariable Regulators,” Applied mathematics and optimization, Vol. 2, No. 2, pp.170-194, 1975.
    [33]Hara, S., Yamamoto, Y., Omata, T. and Nakano, M., “Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals,” IEEE Transactions on Automatic Control, Vol. 33, No. 7, pp.659-668, Jul. 1998.
    [34]Chew, K.K. and Tomizuka, M., “Digital Control of Repetitive Errors in Disk Drive Systems,” in Proc Amer. Control Conf., pp.540-548, Jun. 1990.
    [35]Cosner, C., Anwar, G., and Tomizuka, M., “Plug in Repetitive Control for Industrial Robotic Manipulators,” in Proc. IEEE Int. Conf. Robot. Automat., pp.1970-1975, May 1990.
    [36]賴柏儒,「以FPGA嵌入式系統為控制核心應用在五自由度機械手臂之機構設計與控制」,國立台灣科技大學,機械工程系,碩士,民國103年。
    [37]洪祥富,「雙輪倒單擺車設計與穩定控制」,國立台灣科技大學,機械工程系,碩士,民國102年。
    [38]Denavit, J, and Hartenberg, R. S., “A Kinematic Notation for Lower-pair Mechanisms Based on Matrices,” ASME J. Appl. Mech., pp.215-221, 1955.
    [39]施慶隆教授,「機器人學上課講義」,國立台灣科技大學電機工程系研究所。

    QR CODE