簡易檢索 / 詳目顯示

研究生: 黃信傑
Xin-Jie Huang
論文名稱: 機械手臂負載補償阻抗控制之研究
A Study of Impedance Control with Load Compensation for a Manipulator
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 李俊毅
Jiunn-Yih Lee
邱顯堂
Hsien-Tang Chiu
林其禹
Chyi-Yeu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 94
中文關鍵詞: 阻抗控制負載補償人類與機械人合作
外文關鍵詞: impedance control, load compensation, human-robot cooperation
相關次數: 點閱:192下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機械人一般使用位置控制時,會因系統的控制誤差或外界環境產生改變時,導致機構上之損壞,必須加入順應性控制。在人與機械人協同作業中,機械人根據操作者的導引進行作業,因此機械人必須具備順應外力,並產生適當順應性的能力。
    本研究提出具負載補償策略之阻抗控制,除了使用阻抗控制賦予機械手臂順應能力之外,並考慮機械手臂夾取工作物件時,阻抗控制會因物件本身重力而產生錯誤的順應性,因此利用負載補償策略,扣除負載影響,讓機械手臂在進行位置/姿態阻抗控制時,可以獲得正確的力量/力矩資訊,使人類可與機械手臂順利完成協同任務。
    在本研究實驗中,將使用具負載補償策略之阻抗控制,執行人類與機械人合作任務。當機械手臂夾持工作物件時,經由本研究所提出之負載補償策略,機械手臂可以扣除負載重力影響,且順應人類所施加力量/力矩資訊,進而達到位置/姿態的改變。從實驗結果得知,此控制器可以提供機械手臂具有良好的順應能力。


    In position control, the manipulator needs only to follow a position trajectory. However, when the work environment is changing or the error of position command happened, both robot and environment could be damaged. It is necessary to join compliance control. In human-robot cooperation task, manipulator has to work with the guidance of operator. Manipulator must be have the ability to comply with external forces, and generates compliance ability.
    In this study, impedance control with load compensation is proposed. Impedance control is applied to manipulator compliance ability, and considers the problem which is the gravity of load will generate error compliance ability. Therefore, using load compensation strategy to remove the influence of load, and manipulator could obtain accuracy forces/moments, when manipulator is used to do impedance control with human in human-robot cooperation task.
    The experiment of this study, it will use the impedance control with load compensation to execute the human-robot cooperation task. When the gripper grasps a work object, gripper and work object is regarded a kind of loads for manipulator. This controller is used to remove the influence of load and applied to manipulator compliance ability to finish task. From the experimental results, this controller can provide manipulator has a good ability to comply forces exerted by human.

    摘要 I Abstract II 誌謝 IV Contents V List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature Review 2 1.2.1 Impedance control 3 1.2.2 Human-robot cooperation 5 1.3 Objects 9 Chapter 2 Research Methods 10 2.1 Robot arm kinematics 10 2.1.1 Homogeneous transformation 10 2.1.2 Denavit-Hartenberg convention 13 2.1.3 Forward kinematics 16 2.1.4 Inverse kinematics 21 2.2 Position-based impedance control 23 2.2.1 Impedance Control: position part 25 2.2.2 Impedance Control: orientation part 27 2.3 Load compensation strategy 30 2.3.1 The calibration of force sensor 30 2.3.2 Load compensation 35 2.4 Impedance control with load compensation 44 Chapter 3 Experimental Equipment 47 3.1 Actuator modules 48 3.1.1 Motors and drivers 48 3.1.2 Gear reductions 49 3.2 Interface cards 50 3.2.1 Motion control card 50 3.2.2 Data acquisition card 51 3.3 Sensors 52 3.3.1 Force-torque sensor 52 3.3.2 Optical sensor 53 3.4 The end-effector of manipulator 54 Chapter 4 Results and Analysis 55 4.1 Performance of impedance control 56 4.1.1 Experimental design for different impedance parameters 56 4.1.2 Experimental result and analysis 58 4.2 The experiment of estimation of loading 66 4.2.1 Gripper compensation 66 4.2.2 Experimental result and analysis 69 4.2.3 Load compensation 71 4.2.4 Experimental result and analysis 75 4.3 The experiment of human-robot cooperation 82 4.3.1 Human-robot cooperation task 82 4.3.2 Experimental result and analysis 83 Chapter 5 Conclusion and Future Work 88 5.1 Conclusion 88 5.2 Future work 88 REFERENCES 89

    [1] Hogan, N., “Impedance Control: An Approach to Manipulation: Parts I-III,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp.1-24 (1985)
    [2] Raibert, M. H., and Craig, J. J., “Hybrid Position/Force Control of Manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.102, pp.126-133 (1981)
    [3] Salisbury, J. K., “Active Stiffness Control of a Manipulator in Cartesian Coordinates,” Proceedings of the IEEE Conference on Decision and Control, Stanford, California, pp. 95-100 (1980)
    [4] Kazerooni, H., and Houpt, P. K., “Robust Compliant Motion for Manipulators, Part 11: Design Method,” IEEE journal of robotics and automation, Vol. RA-2, pp.93-105 (1986)
    [5] Anderson, R. J., and Spong, M. W., “Hybrid Impedance Control of Robotic Manipulators,” IEEE journal of robotics and automation, Vol. 4, pp.549-556 (1988)
    [6] Goldenberg, A. A., “Implementation of Force and Impedance Control in Robot Manipulators,” Proceedings of the IEEE Conference on Robotics and Automation, Philadelphia, PA, USA, pp. 1626-1632 (1988)
    [7] Chan, S. P., and Liaw, H. C., “Generalized Impedance Control of Robot for Assembly Tasks Requiring Compliant Manipulation,” IEEE Transactions on Industrial Electronics, Vol. 43, pp. 453-461 (1996)
    [8] Liu, G. J., and Goldenberg, A. A., “Robust Hybrid Impedance Control of Robot Manipulators,” Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, CA, USA , pp. 287-292 (1991)
    [9] Yoshikawa, T., “Force Control of Robot Manipulators,” Proceedings of the IEEE Conference on Robotics and Automation, Kyoto, Japan pp. 220-226 (2000)
    [10] Xu, G., and Song, A., “Fuzzy Variable Impedance Control for Upper-Limb Rehabilitation Robot,” Proceedings 5th International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, Shandong, pp. 216-220 (2008)
    [11] Heinrichs, B., Sepehri, N., and Thornton-Trump, A. B., “Position-Based Impedance Control of an Industrial Hydraulic Manipulator,” IEEE Control Systems Magazine, Vol. 17, pp. 46-52 (1997)
    [12] Love, L. J., and Book, W. J., “Force Reflecting Teleoperation with Adaptive Impedance Control,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 34, pp. 159-165 (2004)
    [13] Jung, S., Hsia, T. C., Bonitz, R. G. “Force Tracking Impedance Control of Robot Manipulators under Unknown Environment,” IEEE Transactions on Control Systems Technology, Vol. 12, pp. 474-483 (2004)
    [14] Bauer, A., Wollherr, D., and Buss, M., “Human-Robot Collaboration: A Survey,” International Journal of Humanoid Robotics, Vol. 5, pp. 47-66 (2007)
    [15] Argall, B. D., and Billard, A. G., “A Survey of Tactile Human-Robot Interactions,” Robotics and Autonomous Systems, Vol. 58 , pp. 1159-1176 (2010)
    [16] Yokoyama, K., Handa, H., and Isozumi, T., “Cooperative Works by a Human and a Humanoid Robot,” Proceedings of the IEEE Conference on Robotics and Automation, Taipei, Taiwan, pp. 2985-2991 (2003)
    [17] Hirata, Y., Kume, Y., Wang, Z. D., and Kosuge, K. “Handling of a Single Object by Multiple Mobile Manipulators in Cooperation with Human Based on Virtual 3-D Caster Dynamics,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 48, pp. 613-619 (2005)
    [18] Takeda, T., Hirata, Y., and Kosuge, K., “Dance Step Estimation Method Based on HMM for Dance Partner Robot,” IEEE Transactions on Industrial Electronics, Vol. 54, pp. 699-706 (2007)
    [19] Calinon, S., Evrard, P., Gribovskaya, E., Billard, A., and Kheddar, A., “Learning Collaborative Manipulation Tasks by Demonstration Using a Haptic Interface,” International Conference on Advanced Robotics , ICAR, Munich (2009)
    [20] Lawitzky, M., Mortl, A., and Hirche, S., “Load Sharing in Human-Robot Cooperative Manipulation,” Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication, Viareggio, pp. 185-191 (2010)
    [21] Ikeura, R., and Inooka, H., “Variable Impedance Control of a Robot for Cooperation with a Human,” Proceedings of the IEEE Conference on Robotics and Automation, Sendai, Japan, pp. 3097-3102 (1996)
    [22] Kosuge, K., and Kazamura, N., “Control of a Robot Handling an Object in Cooperation with a Human,” Proceedings of the IEEE International Workshop on Robot and Human Communication, Tohoku Univ, Sendai, Japan, pp. 142-147 (1997)
    [23] Maeda, Y., Hara, T., and Arai, T. “Human-Robot Cooperative Manipulation with Motion Estimation,” Proceedings of the IEEE Conference on Intelligent Robots and Systems, Maui, Japan, pp.2240-2245 (2001)
    [24] Takubo, T., Arai, H., Hayashibara, Y., and Tanie, K. “Human-Robot Cooperative Manipulation using a Virtual Nonholonomic Constraint,” International Journal of Robotics Research, Vol. 21, pp. 541-553 (2002)
    [25] Tsumugiwa, T., Yokogawa, R., and Hara, K. “Variable Impedance Control Based on Estimation of Human Arm Stiffness for Human-Robot Cooperative Calligraphic Task,” Proceedings of the IEEE Conference on Robotics and Automation, Tanabe, Japan, pp. 644-650 (2002)
    [26] Yigit, S., Burghart, C., and Worn, H., “Co-operative Carrying using Pump-Like Constraints,” Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, pp.3877-3882 (2004)
    [27] Duchaine, V., and Gosselin, C. M., “General Model of Human-Robot Cooperation using a Novel Velocity Based Variable Impedance Control,” Second Joint EuroHaptics Proceedings of the Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Tsukuba, Japan, pp.446-451 (2007)
    [28] Wojtara, T., Uchihara, M., and Murayama, H., “Human-Robot Collaboration in Precise Positioning of a Three-Dimensional Object,” Automatica, Vol. 45, pp. 333-342 (2009)
    [29] Fujita, M., and Inoue, H., “A Study on the Processing of Force Sensor Signals,” Proceedings of Annual Conference of the Robotics Society of Japan, Tokyo, pp. 153-160 (1979)
    [30] Uchiyama, M., and Kitagaki, K., “Dynamic Force Sensing for High-Speed Robot Manipulation using Kalman Filtering Techniques,” Proceedings of the IEEE Conference on Decision and Control, Tampa, USA, pp. 2147-2152 (1989)
    [31] Gamez Garcia, J., Robertsson, A., Gomez Ortega, J., and Johansson, R., “Generalized Contact Force Estimator for a Robot Manipulator,” Proceedings of the IEEE Conference on Robotics and Automation, Orlando, USA, pp. 4019-4024 (2006)
    [32] Kubus, D., Kroger, T., and Wahl, F., M., “Improving force control performance by computational elimination of non-contact forces/torques, ” Proceedings of the IEEE Conference on Robotics and Automation, Pasadena, USA, pp. 2617-2622 (2008)
    [33] Spong, M. W., Hutchinson, S., and Vidyasagar, M., Robot Modeling and Control, John Wiley & Sons, Inc., USA, pp. 56-60 (2006)
    [34] 許政行,機器人操縱器,科技圖書股份有限公司,台北,第230-236頁(1984)

    QR CODE