簡易檢索 / 詳目顯示

研究生: 桂子斌
Tzu-Pin Kuei
論文名稱: 撓性關節機械臂適應阻抗控制新設計
A New Adaptive Impedance Controller Design of Flexible-Joint Manipulators
指導教授: 黃安橋
An-Chyau Huang
口試委員: 陳亮光
Liang-kuang Chen
李錟鋒
Tan-Feng Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 44
中文關鍵詞: 撓性關節機械臂適應控制阻抗控制
外文關鍵詞: flexible joint manipulator, adaptive control, impedance control
相關次數: 點閱:219下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對n軸撓性關節機械臂提出適應阻抗控制的新設計。相較傳統適應控制,新設計除了減少估測參數數量,並不需藉助Slotine & Li修正來避免singularity,也不用回授關節加速度,更無需計算複雜的迴歸矩陣。如此一來不僅簡化推導過程,也因估測數量減少而降低運算硬體需求,讓本方法更接近工業應用的實現。本文最後以電腦模擬二軸撓性關節機械臂在平面受限空間中的順應運動,來驗證新設計的有效性,並與傳統適應控制方法做性能比較。


    This thesis proposed a new adaptive controller design for controlling flexible-joint manipulators in the constrained space. Compared to the traditional adaptive control, the new approach reduced the number of estimated parameters, and avoided Slotine & Li’s modification, angular acceleration feedback and computation of regressor matrix, thereby enhancing computational efficiency and simplifying the derivation process. Based on the new approach, implementation is more suitable in realization in industry environment. Finally, the simulation results are shown to prove effectiveness and to compare performance between the new and the traditional methods.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖片索引 V 第一章 緒論 1 第二章 剛性機械臂之適應阻抗控制器設計回顧 4 2.1 傳統機械臂適應控制回顧 5 2.2 無迴歸矩陣之機械臂適應控制器設計 7 2.3 剛性機械臂於受限空間之傳統適應控制回顧 8 第三章 撓性機械臂之適應阻抗控制器設計 12 3.1 傳統適應阻抗控制 14 3.2 無迴歸矩陣之適應阻抗控制 17 3.3 新控制器設計方法 19 第四章 模擬分析 22 4.1 模擬架構 22 4.2 模擬結果 23 範例一:無回歸矩陣搭配Slotine & Li修正 23 範例二:適應阻抗控制新方法 28 4.3 控制器的比較與討論 32 第五章 結論 33 參考文獻 34

    Ahmad, S., “Constrained motion (force/position) control of flexible joint robots,” IEEE Trans. System, Man, and Cybernetics, vol. 23, issue 2, pp. 374-381, 1993.

    Albu-Schaffer, A., Ott, A., Frese, F. and Hirzinger, G.,“Cartesian impedance control of redundant robots: recent results with the DLR-light-weight-arms,” in Proc. IEEE Conf. Robotics and Automation, pp.3704-3709, 2003.

    Boker, A.M. and Khalil, H.K., “Control of Flexible Joint Manipulators Using Only Motor Position Feedback: A Separation Principle Approach,” 52nd IEEE Conf. on Decision and Control, pp.244-249, 2013.

    Colbaugh, R., Glass, K., and Gallegos, G., “Adaptive compliant motion control of flexible-joint manipulators,” in Proc. American Control Conf., pp. 1873-1878, 1997.

    Chien, M.C. and Huang, A.C., “Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix,” Robotica, vol. 30, pp. 133-144, 2012.

    Ferretti, G., Magnani, G., and Rocco, P., ”Impedance control for elastic joints industrial manipulators,” IEEE Trans. Robotics and Automation, vol.20, no.3, pp.488-498, 2004.

    Fateh, M.M., “Robust control of flexible-joint robots using voltage control strategy,” Nonlinear Dynamics, vol.67, no.2, pp.1525-1537, 2012.

    Ge, S.S., “Adaptive controller design for flexible-joint manipulators,” Automatica, vol.32, no.2, pp.273-278, 1996.

    Gholami, S., Arjmandi, A. and Taghirad, H.D., “An observer-based adaptive impedance control for robotic arms: case study in SMOS robot,” IEEE Int. Conf. on Robotics and Mechatronics, pp. 49-54, 2016.

    Hogan, N., “Impedance control: an approach to manipulation: Part1-theory, Part2-implementation, Part3-an approach to manipulation,” ASME J. Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-24, 1985.

    Huang, A.C. and Chien, M.C., Adaptive Control of Robot Manipulators: A Unified Regressor-free Approach, World Scientific Publishing Co., 2010.

    Ioannou, P.A. and Sun, J., Stable and Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1995.

    Ider, S.K., “Force and motion trajectory tracking control of flexible-joint robots,” Mechanism and Machine Theory, vol.35, pp.363-378, 2000.

    Kelly, R., Carelli, R., Amestegui, M., and Ortega, R., “An adaptive impedance control of robot manipulators,” in Proc. IEEE Conf. Robotics and Automation, pp. 572-557, 1989.
    Khorasani, K., “Adaptive control of flexible-joint robots,” IEEE Trans. Robotics and Automation, vol.8, no.2, pp.250-267, 1992.

    Kozlowski, K. and Sauer, P., “On adaptive control of flexible-joint manipulators: theory and experiments,” in Proc. IEEE Sym. Industrial Electronics, pp.1153-1158, 1999.

    Kim, M.S. and Lee, J.S., “Adaptive tracking control of flexible-joint manipulators without overparametrization,” J. Robotic Systems, vol.21, no.7, pp.369-379, 2004.

    Kai, C.Y. and Huang, A.C., “A Regressor-Free Adaptive Controller for Robot Manipulators without Slotine and Li’s Modification,” Robotica, vol. 31, issue 7, pp. 1051-1058, 2013.

    Lu, W.S. and Meng, Q.H., “Recursive computation of manipulator regressor and its application to adaptive motion control of robots,” in Proc. IEEE Conf. on Communication, Computers and Signal Processing, pp. 170-173, 1991.

    Lim, S.Y., Dawson, D.M., Hu, J., and de Queiroz, M.S., “An adaptive link position tracking controller for rigid-link flexible-joint robots without velocity measurements,” IEEE Trans. System, Man, and Cybernetics-Part B: Cybernetics, vol. 27, no. 3, pp.412-427, 1997.

    Lozano, R. and Brogliato, B., “Adaptive control of robot manipulators with flexible joints,” IEEE Trans. Automatic Control, vol.37, no.2, pp.174-181, 1992.

    Lin, T. and Goldenberg, A.A., “Robust adaptive control of flexible joint robots with joint torque feedback,” in Proc. IEEE Conf. Robotics and Automation, pp.1229-1234, 1995.

    Lin, T. and Goldenberg, A.A., “A unified approach to motion and force control of flexible joint robots,” in Proc. IEEE Conf. Robotics and Automation, pp. 1115-1120, 1996.

    Mason, M.T., “Compliance and force control for computer controlled manipulators,” IEEE Trans. Syst., vol. SMC-11, pp.418-432, 1981.

    Massoud, A.T. and Elmaraghy, H.A., “Model-based motion and force control of flexible-joint robot manipulators,” Int. J. Robotics Research, vol.6, no.4, pp.529-544, 1997.

    MatKo, D., Kamnik, R. and Bajd, T., “Adaptive impedance force control of an industrial manipulator,” in Proc. IEEE Sym. Industrial Electronics, pp. 129-133, 1999.

    Ott, A., Albu-Schaffer, A., Kugi, A., and Hirzinger, G., “Decoupling based Cartesian impedance control of flexible-joint robots,” in Proc. IEEE Conf. Robotics and Automation, pp.3101-3107, 2003.

    Ott, A., Albu-Schaffer, A., Kugi, A., Stramigioli, S., and Hirzinger, G., “Passivity based Cartesian impedance controller for flexible joint robots-Part I: Torque feedback and gravity compensation, and Part II: Full state feedback, impedance design and experiments,” in Proc. IEEE Conf. Robotics and Automation, pp.2666-2672, 2004.

    Ozawa, R. and Kobayashi, H., “A new impedance control concept for elastic joint robots,” in Proc. IEEE Conf. Robotics and Automation, pp.3126-3131, 2003.

    Ozgoli, S. and Taghirad, H.D., “A survey on the control of flexible joint robots,” Asian J. Contr., vol. 8, no. 4, pp. 332-344, 2006.

    Pagilla, P.R. and Biao Yu, “Adaptive control of robotic surface finishing processes,” in Proc. American Control Conf., pp. 630-635, 2001.

    Raibert, M.H., and Craig, J.J., “Hybrid Position/Force control of manipulators,” ASME, J. Dynamics Systems, Measurements and Control, vol. 102, pp. 126-133, 1981.

    Spong, M.W., “Modeling and control of elastic joint robots,” ASME J. Dynamic System, Measurement, and Control, vol.109, pp.310-319, 1987.

    Spong, M.W. and Vidyasagar, M., Robot dynamics and control, John Wiley & Sons, NY, 1989.

    Spong, M.W., “Adaptive control of flexible-joint manipulators,” System and Control Letters, vol.13, pp.15-21, 1989.

    Spong, M.W., “On the force control problem for flexible-joint manipulators,” IEEE Trans. Automatic Control, vol.34, pp.107-111, 1989a.

    Slotine, J-J. E. and Li, W., Applied Nonlinear Control, Prentice Hall, NJ, 1991.

    Sharifi, M., Behzadipour, S. and Vossoughi, G., “Nonlinear model reference adaptive impedance control for human–robot interactions,” Control Engineering Practice, vol. 32, pp. 9-27, 2014.

    Schindlbeck, C. and Haddadin, S., “Unified Passivity-Based Cartesian Force/Impedance Control for Rigid and Flexible Joint Robots via Task-Energy Tanks,” IEEE Int. Conf. on Robotics and Automation, pp.440-447, 2015.

    Yang, L. and Li, Z., “Adaptive impedance controller design of robot’s manipulator using nominal information,” IEEE Int. Conf. On Advanced Robotics and Mecharonics, pp.496-500, 2016.

    Zhen, R.R.Y. and Goldenberg, A.A, “An adaptive approach to constrained robot motion control,” in Proc, IEEE Int. Conf. Robotics Automation, pp. 1833-1838, 1995.

    QR CODE