簡易檢索 / 詳目顯示

研究生: 張哲豪
Zhe-hao Zhang
論文名稱: 大型車輛之適應性翻覆預防控制與啟動時機探討
Adaptive Control of Bus Rollover Prevention and Investigation of the Activation Criteria
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 徐繼聖
G.S. Hsu
洪博雄
Boe-Shong Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 翻覆預防
外文關鍵詞: Rollover Prevention
相關次數: 點閱:171下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先確立前輪轉向角與偏航轉矩對於縮小型車輛平台動態響應正確性,然後透過適應性模型預估控制法(adaptive model predictive control, AMPC)設計直接偏航轉矩控制(Direct Yaw-moment Control, DYC),並且加入控制模式切換,使得偏航轉矩在適當時機施加以完成翻覆預防。
    在完成電腦模擬後,透過縮小型車輛平台進行實驗,透過STI控制前輪轉向角以達成雙車道變換之任務,以評估加入DYC抑制翻覆的效果。實驗結果顯示本研究所設計的DYC在車輛進行激烈的車道變換時,仍然輸出合適的偏航轉矩以有效的抑制翻覆動作,亦即達到翻覆預防的效果。


    In this research the model of a scaled bus is established by verifying the model parameters and inherent nonlinearity. An adaptive model predictive control framework is utilized to design the direct yaw moment control for vehicle rollover prevention. An activation criteria is investigated to determine the control action. The computer simulations indicate that the proposed controller can reduce the roll angle of the vehicle via the moment control and the activation criteria can prevent the controller from constant braking that might disturb the drivers. The scaled vehicle experiments show that the developed controller can reduce the roll angle in the designated timing.

    第一章 序論.…………………………………...……………………………………..1 1.1 研究背景與動機.……………………..……………………………………..1 1.2 文獻探討.…………………………...…….…………………………………2 1.2.1 應用MPC法則於車輛控制.……………………………………….3 1.2.2 差動煞車與直接偏航轉矩控制法.………………………………….3 1.2.3 翻覆指標與翻覆預防控制器門檻值.……………………………….4 1.2.4 縮小型車輛.……………………....………………………………….6 1.2.5 文獻總結與論文目標.……………………....……………………….7 1.3工作項目.…………………………...………………………………………..8 第二章 控制架構與模型比對.……………………………………………………….9 2.1 三自由度線性車輛動力學.…………………………………………………9 2.2 建立前輪轉向命令與真實前輪轉向角之間的關係.……………………14 2.3 驗證前輪轉向角對於縮小車模型之動態響應正確性.…………………17 2.4驗證偏航轉矩對於縮小車模型之動態響應正確性.…………………19 第三章 透過AMPC設計適當之DYC完成翻覆預防……………………24 3.1 MPC背景.…………………………………………………………………..24 3.2 PLTR翻覆指標.…………………………...……………………………...24 3.3 DYC結合PLTR門檻值.………………………...………………………..28 3.4 模擬結果與討論.……………………….…………………………………30 3.4.1模擬環境.…………………………...……………………………...31 3.4.2透過lookup table產生預期路徑.………………………………….31 3.4.3 狀態回授適應性駕駛人模型之DYC模擬結果與討論.………….31 3.4.4 具有控制模式切換之DYC模擬結果與討論.…………………….32 3.4.5 兼具狀態回授適應性駕駛人模型與控制模式切換之DYC模擬結果與討論……………………………………………..……………35 3.5 模擬總結.……………………………………..………………………....39 第四章 硬體設備與感測器應用.……………………………………………..…40 4.1 縮小型車輛…………...…………………...…………………...…………..40 4.2輸送帶………………...……………...…………………...………………...41 4.3 I/O介面卡………………...……………...…………………...…………….42 4.4 DT60雷射測距儀………………...……………...…………………...…….42 4.5 傾斜儀………………...……………...…………………...………………..43 4.6加速度規………………...……………...………………...………………..44 4.7 縮小車速度與前輪轉向角求法……………...………………………….45 4.8縮小型車輛之偏航角與重心位置計算……………...………………..46 4.9 DT60量測校正……...………..………………...……...…………..............48 第五章 實驗規劃與結果………………...…………………...……………..49 5.1 實驗規劃……………...…………………...…………...………………….49 5.1.1 路徑規劃與初速設定……………….. ….....…………...………..49 5.1.2 駕駛人行為……………...………...………...………...…………..50 5.2 實驗結果與討論……………...………...………...………...…………..50 5.2.1 沒有加入DYC與加入DYC的實驗結果與討論………...………..50 5.2.2 DYC與具有適應性駕駛人之DYC的實驗結果與討論………..53 5.2.3 僅具適應性駕駛人與兼具適應性駕駛人、控制模式切換之DYC實驗結果與討論……………………………………..……………54 第六章 結論與未來展望………………...…………………...……………………..57 6.1 結論………………...……………...…………………...…………………..57 6.2 未來展望………………...……………...…………………...……………..57 參考文獻………………...…………………...…………………...………………….59

    [1] http://www.motc.gov.tw/mocwebGIP/wSite/ct?xItem=4302&ctNode=168&mp=1
    [2] Yoon, Y., Wanki Cho, Bongyeong Koo, and Kyongsu Yi, “Unified Chassis Control for Rollover Prevention and Lateral Stability,” IEEE Transactions on Vehicular Technology, 2009
    [3] Ungoren, A. Y., and Peng, H., “An adaptive lateral preview driver model,” Vehicle System Dynamics, Vol. 43, No. 4, April 2005, pp 245-259
    [4] Yoshida, H., Shuntaro Shinohara and Masao Nagai, “Lane change steering manoeuvre using model predictive control theory,” Vehicle System Dynamics, Vol. 46, Supplement, 2008, pp669–681
    [5] Falcone, F. P., Keviczky, T., Asgari, J., and Hrovat, D., “MPC-based approach to active steering for autonomous vehicle systems,” International Journal of Vehicle Autonomous Systems, v 3, n 2-4, 2005, pp 265-291
    [6] Paolo Falcone, Francesco Borrelli, Jahan Asgari, Hongtei Eric Tseng, and Davor Hrovat, “Predictive Active Steering Control for Autonomous Vehicle Systems,” IEEE Transactions on Control Systems Technology, VOL. 15, NO. 3, MAY 2007
    [7] Seki, Y., Ohya, J., and Miyoshi, M., “Collision avoidance system for vehicles applying Model Predictive Control theory,” ITSC, 1999, pp 453-458
    [8] Bageshwar, V. L., Garrard, W. L., and Rajamani, R., “Model predictive control of transitional maneuvers for adaptive cruise control vehicles,” IEEE Transactions on Vehicular Technology, v 53, n 5, September, 2004, pp 1573-1585
    [9] Carlson, C. R., and Gerdes, J. C., “Optimal Rollover Prevention with steer-by-wire and differential Braking,” ASME Dynamics Systems and Control Division, 2003, v72, n1, pp. 345-354.
    [10] 鄭嘉峰,“透過模型預估偏航轉矩控制法完成車輛翻覆預防” 國立台灣科技大學機械工程系碩士論文, 2009
    [11] Johansson, B., and Gafvert, M., “Untripped SUV rollover detection and prevention,” IEEE Conference on Decision and Control (CDC), 2004, pp 5461-5466
    [12] Wielenga, T. J., “A method for reducing on-road rollovers: anti-rollover braking,” SAE Paper, 1999, No. 1999-01-0123
    [13] Yi, K., Chung, T., Kim, J., and Yi, S., “An investigation into differential braking strategies for vehicle stability control,” Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, v 217, n 12, 2003, pp 1081-1094
    [14] Geng, C., Mostefai, L., Denaï, M., and Hori, Y. “Direct Yaw-Moment Control of an In-Wheel-Motored Electric Vehicle Based on Body Slip Angle Fuzzy Observer,” IEEE Transactions on Industrial Electronics, 2009
    [15] Boada, B. L., Boada, M. J. L. and Díaz, V. “Fuzzy-logic applied to yaw moment control for vehicle stability,” Vehicle System Dynamics, Vol. 43, No. 10, October 2005, pp753–770
    [16] Raksincharoensak, P., Mizushima, T. and Nagai, M. “Direct yaw moment control system based on driver behaviour recognition,” Vehicle System Dynamics, Vol. 46, Supplement, 2008, pp911–921
    [17] Goodarzi, A., and Esmailzadeh, E., “An optimal vehicle stability enhancement strategy for articulated vehicles,” ASME International Mechanical Engineering Congress and Exposition, 2006, pp9
    [18] Lewis, A. S., and El-Gindy, M., “Sliding mode control for rollover prevention of heavy vehicles based on lateral acceleration,” Heavy Vehicle Systems, v 10, n 1-2, 2003, pp 9-34
    [19] Gaspar, P., Szabo, Z., and Bokor, J., “Prediction Based Combined Control To Prevent The Rollover Of Heavy Vehicle,” 20th IEEE International Symposium on Intelligent Control, ISIC '05 and the 13th Mediterranean Conference on Control and Automation, MED '05, 2005, pp 575-580
    [20] Lugner, P., Heinzl, P., and Plochl, M., “Yaw moment control of a passenger car by unilateral braking or additional steering,” Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2000, pp.23-24
    [21] Zeyada,Y., Karnopp, D., El-Arabi, M., El-Behiry, and El-Sayed, “Combined active steering differential braking yaw rate control strategy for emergency maneuvers,” SAE Special Publications, Feb, Vehicle Dynamics and Simulation , v 1361, 1998, pp 97-102
    [22] Pilutti, T., Ulsoy, A. G., and Hrovat, D., “Vehicle Steering Intervention Through Differential Braking,” American Control Conference, v 3, n Suppl, 1996, pp 502-518
    [23] Yoon, J., Kim, D., and Yi, K., “Design of a rollover index-based vehicle stability control scheme,” Vehicle System Dynamics, v 45, n 5, 2007, pp 459-475, (also appeared in AVEC'06: 8th International Symposium on Advanced Vehicle Control)
    [24] Gillespie, T. D., “Fundamentals of Vehicles Dynamics,” SAE International
    [25] Chen, B. C., and Peng, H., “Differential-braking-based rollover prevention for utility vehicle with human-in-the-loop evaluation,” Vehicle System Dynamics, v 36, n 4-5, 2001, pp 359-389
    [26] Choi, S. B., “Practical vehicle rollover avoidance control using energy method,” Vehicle System Dynamics, v 46, n 4, April, 2008, pp 323-337
    [27] Trent, V., Greene, M., “A genetic algorithm predictor for vehicular rollover,” IECON Proceedings (Industrial Electronics Conference), v3, 2002, p 1752-1756
    [28] Braghin, F., Cheli, F., Corradi, R., Tomasini, G. and Sabbioni, E., “Active anti-rollover system for heavy-duty road vehicles,” Vehicle System Dynamics, Vol. 46, Supplement, 2008, pp653–668
    [29] Solmaz, S., Corless, M. and Shorten, R., “A methodology for the design of robust rollover prevention controllers for automotive vehicles with active steering,” International Journal of Control, Vol. 80, No. 11, November 2007, pp1763–1779
    [30] YOON, J., Kim, D. and Yi, K., “Design of a rollover index-based vehicle stability control scheme,” Vehicle System Dynamics, Vol. 45, No. 5, May 2007, pp459–475
    [31] Jung, J., Shim, T., and Gertsch, J., “A Vehicle Roll-Stability Indicator Incorporating Roll-Center Movements,” IEEE Transactions on Vehicular Technology, 2009
    [32] Tsourapas, V., Piyabongkarn, D., Williams, C. and Rajamani, R., “New Method of Identifying Real-Time Predictive Lateral Load Transfer Ratio for Rollover Prevention Systems,” American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009
    [33] Longoria, R. G., Al-Sharif, A., and Patil, C. B., “Scaled vehicle system dynamics and control: A case study in anti-lock braking,” International Journal of Vehicle Autonomous Systems, v 2, n 1-2, 2004, pp 18-39
    [34] Brennan, S. and Alleyne, A., 2001, “Robust scalable vehicle control via non-dimensional vehicle dynamics,” Vehicle System Dynamics, vol.36, p255-277
    [35] Benatzky, C., Kozek, M. and J¨orgl, H. P., “Comparison of controller design methods for a scaled metro vehicle - flexible structure experiment,” American Control Conference, New York City, USA, July 11-13, 2007
    [36] Witaya, W., Parinya, W., and Krissada, C. “Scaled Vehicle for Interactive Dynamic Simulation,” International Conference on Robotics and Biomimetics Bangkok, Thailand, February 21 - 26, 2009
    [37] Pushkin, K., “Setup for advanced vehicle control systems experiments in the flexible low-cost automated scaled highway (FLASH) laboratory,” Proceedings of SPIE - The International Society for Optical Engineering, 1995, p269-278
    [38] Travis, W. E.,Whitehead, R. J., Bevly, D. M., Flowers, G. T., “Using scaled vehicles to investigate the influence of various properties on rollover propensity,” Proceedings of the 2004 American Control Conference (AAC), p3381-3386
    [39] Ulsoy, A. G., and Peng, H., “Vehicle Control System,” Lecture Notes for ME 568, University of Michigan, 1997.
    [40] 許聖勇,“車輛安全系統研究之大型車輛翻覆預防” 國立台灣科技大學機械工程系碩士論文, 2006
    [41] Piyabongkarn, D., Rajamani, R., Grogg, A., and Lew, J. Y., “Development and Experimental Evaluation of a Slip Angle Estimator for Vehicle Stability Control,” IEEE Transactions on Control Systems Technology, VOL, 17, NO. 1, JANUARY 2009

    QR CODE