簡易檢索 / 詳目顯示

研究生: 洪寶遠
Bao-yuan Hong
論文名稱: 預估式車輛翻覆偵測與縮小型車輛翻覆預防之評估
Predictive Vehicle Rollover Index and Evaluation of Scaled Vehicle Rollover Prevention Strategy
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 陳柏全
Bo-Chiuan Chen
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 差動煞車直接偏航轉矩模型預估控制法遞迴最小平方法翻覆預防翻覆指標
外文關鍵詞: Differential braking, Direct yaw moment control, Model predictive control, Recursive least square method, Roll index, Rollover prevention
相關次數: 點閱:386下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由差動煞車(Differential braking)以及直接偏航轉矩(Direct Yaw-moment Comtrol, DYC)的架構可提供部份翻覆預防的功能,本研究使用模型預估控制法(model predictive control, MPC)設計DYC,再藉由縮小型車輛的左右輪差速控制來產生預防翻覆的偏航矩。考慮到了車輛上的乘載狀況變化的問題,透過車輛動力學模型以及遞迴最小平方法設計一線上車輛質量估測器,再將估測而得的車輛質量用以更新於MPC內部所需的車輛模型,以使得此DYC設計能適應未知的車輛質量所產生的影響。經實驗證明由於模型以及訊號的精確度不高,因此質量估算的結果並不佳,但是若質量估算的品質能藉由訊號篩選以及模型修正而得較正確之值時,MPC設計的DYC能有效針對不同的車輛質量提供更正確的翻覆預防控制命令。
    偵測翻覆發生的翻覆指標,常可作為啟動翻覆預防控制器或警示所需的依據。由於翻覆偵測的目的在於預防,而近年來車輛前方道路模型偵測的技術愈見成熟,本研究探討結合前方道路資訊在翻覆偵測上所能提供的改善。藉由道路模型以及車速資訊,建立未來可能發生的車輛偏航率以及前輪轉向角,再透過車輛動力學預估車輛未來的動態,再經由這些未來資訊應用於翻覆指標,從而建立預估式的翻覆指標,最後利用TruckSim模擬來驗證預估效果。


    The framework of utilizing direct yaw moment control (DYC) and differential braking has been applied to vehicle rollover prevention. In this research the model predictive control (MPC) has been employed to design the DYC for rollover prevention. A scaled vehicle with independent driving wheel control is used to emulate the differential braking to implement the desired yaw moment. Considering the variation in the loading condition, the vehicle mass is estimated on-line using a recursive least square method based on the vehicle model structure. The estimated mass is used to update the vehicle model that is needed inside the MPC, so that the MPC can adapt to the change in the loading condition. Experimental results indicate that due to the quality of the measured signals and the model, the estimated mass fluctuates significantly and is practically un-usable. However, in the future if the mass estimation can be improved by introducing more high quality sensors or better model information, a correctly estimated mass will be beneficial to the MPC and the computed yaw moment can provide the desired function even when the mass is unknown.
    The roll index to predict vehicle rollover is generally used to determine whether to issue a warning or intervention for rollover prevention. Since the purpose of the roll index is to prevent, and the vast progress in the road information detection technology, in this research the advantage of utilizing upcoming road information to the rollover detection. Using the assumed available road geometry model and the instantaneous vehicle speed, the possible vehicle yaw rate and front wheel steering angle is computed. Applying the computed signals to the vehicle model, the future vehicle dynamics is estimated on-line in discrete time instants. With the predicted vehicle dynamic states, the predictive roll indices are established and evaluated using TruckSim simulations.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.2.1 翻覆指標 2 1.2.2 應用MPC法則於控制方面 4 1.2.3 差動煞車和DYC 5 1.2.4 文獻總結和目標 6 1.3 工作項目 6 第二章 預估式翻覆指標 7 2.1 預估器設計 7 2.2 預估式翻覆指標 16 2.2.1 翻覆指標 16 2.2.2 加入預估器的預估式翻覆指標 18 2.3模擬討論 25 第三章 透過AMPC設計預防翻覆之DYC 27 3.1 三自由度線性車輛動力學 27 3.2 RLS (Recursive Least Square method)演算法 29 3.3 DYC控制器 30 3.4 線上更新質量之DYC 31 3.5 模擬結果與討論 32 3.5.1 加入DYC模擬結果與討論 33 3.5.2未加入具有車輛質量更新能力的DYC模擬結果與討論 35 3.5.3加入具有車輛質量更新能力的DYC模擬結果與討論 37 3.6 模擬討論 40 第四章 硬體設備與感測器應用 41 4.1實驗設備 41 4.2實驗相關計算 45 第五章 實驗規劃與結果 48 5.1 實驗規劃 48 5.1.1 路徑規劃與初速設定 48 5.1.2 駕駛人行為 49 5.2 實驗結果與討論 49 5.2.1 加入MPC的實驗結果與討論 52 5.2.2 加入MPC(不具有質量更新)的實驗結果與討論 54 5.2.3 加入MPC(具有質量更新)的實驗結果與討論 56 第六章 結論與未來展望 59 6.1 結論 59 6.2 未來展望 59 參考文獻 61   圖 表 索 引 圖2.1車輛動力學模型示意圖 7 圖2.2 驗證動力學模型之示意圖 11 圖2.3 前輪轉向角 12 圖2.4 側滑角(sideslip angle) 12 圖2.5 偏航率 12 圖2.6 側傾角速率 13 圖2.7 側傾角 13 圖2.8 前輪轉向角 14 圖2.9 側滑角(sideslip angle) 14 圖2.10 偏航率 14 圖2.11 側傾角速率 15 圖2.12 側傾角 15 圖2.13 橫向加速度 15 圖2.14 Static rollover characteristic of a suspended vehicle 17 圖2.15 Phase plane analysis for various initial conditions 17 圖2.16 前輪轉向角 19 圖2.17 側滑角(sideslip angle) 20 圖2.18 偏航率 20 圖2.19 側傾角速率 20 圖2.20 側傾角 21 圖2.21 橫向加速度 21 圖2.22 LTRe(靜態LTR) 21 圖2.23 RI (Rollover index) 22 圖2.24 WWLO(能量法) 22 圖2.25 前輪轉向角 22 圖2.26 側滑角(sideslip angle) 23 圖2.27 偏航率 23 圖2.28 側傾角速率 23 圖2.29 側傾角 24 圖2.30 橫向加速度 24 圖2.31 LTRe(靜態LTR) 24 圖2.32 RI (Rollover index) 25 圖2.33 WWLO(能量法) 25 圖3.1 控制器架構示意圖 27 圖3.2 路徑規劃圖 32 圖3.3 lookup table換算縱向橫向位移之示意圖 33 圖3.4 前輪轉向角 34 圖3.5 偏航轉矩 34 圖3.6 偏航率 34 圖3.7 橫向位移 35 圖3.8 側傾角 35 圖3.9 前輪轉向角 36 圖3.10 偏航轉矩 36 圖3.11 偏航率 36 圖3.12 橫向位移 37 圖3.13 側傾角 37 圖3.14 前輪轉向角 38 圖3.15 偏航轉矩 38 圖3.16 偏航率 38 圖3.17 橫向位移 39 圖3.18 側傾角 39 圖3.19 車輛質量之更新 39 圖4.1 縮小型車輛 42 圖4.2 前輪轉向系統 42 圖4.3 後輪之差動煞車系統 42 圖4.4 輸送帶 43 圖4.5 Humusoft MF614 43 圖4.6 DT60雷射測距儀外觀 44 圖4.7 後輪編碼器安裝位置 45 圖4.8 縮小型車輛之重心位置與偏航角示意圖 46 圖5.1 縮小車之預期路徑 49 圖5.2 STI回授駕駛人控制架構 49 圖5.3 前輪轉向角 50 圖5.4 側滑角 50 圖5.5 橫向加速度 51 圖5.6 側傾角 51 圖5.7 前輪轉向角 52 圖5.8 偏航轉矩 52 圖5.9 路徑追蹤 53 圖5.10 偏航角 53 圖5.11 側傾角 53 圖5.12 前輪轉向角 54 圖5.13 偏航轉矩 54 圖5.14 路徑追蹤 55 圖5.15 偏航角 55 圖5.16 側傾角 55 圖5.17 RLS計算之車輛質量mR 56 圖5.18 前輪轉向角 57 圖5.19 偏航轉矩 57 圖5.20 路徑追蹤 57 圖5.21 偏航角 58 圖5.22 側傾角 58 表2.1 車輛動力學模型之參數 8 表3.1 SUV車輛參數 28 表3.2 各模擬結果比較 40 表4.1 DT60規格表 44 表4.2 符號名稱定義 47

    [1] http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
    [2] Gillespie, T. D., “Fundamentals of vehicles dynamics,” SAE International
    [3] Heydinger, G. J. and Howe, J. G., “Analysis of vehicle response data measured during severe maneuvers, ” presented at the SAE World Congr., Detroit, MI, 2000, Paper 2000-01-1644
    [4] Choi, S. B., “Practical vehicle rollover avoidance control using energy method, ” Vehicle System Dynamics, Vol. 46, No. 4, April, 2008, pp 323-337
    [5] Jung, J., Shim, T. and Gertsch, J., “A vehicle roll-stability indicator incorporating roll-center movements, ” IEEE Transactions on Vehicular Technology, 2009
    [6] Solmaz, S., Corless, M. and Shorten, R., “A methodology for the design of robust rollover prevention controllers for automotive vehicles with active steering, ” International Journal of Control, Vol. 80, No. 11, November 2007, pp 1763–1779
    [7] Johansson, B. and Gafvert, M., “Untripped suv rollover detection and prevention,” IEEE Conference on Decision and Control, December 2004, pp 14-17
    [8] Yoon, J., Kim, D. and Yi, K., “Design of a rollover index-based vehicle stability control scheme,” Vehicle System Dynamics, Vol. 45, No. 5, May 2007, pp 459–475
    [9] Chen, B. C. and Peng, H., “Differential-braking-based rollover prevention for utility vehicle with human-in-the-loop evaluation,” Vehicle System Dynamics, v 36, n 4-5, 2001, pp 359-389
    [10] Yu, Z., Zong, C., He, L. and Huang, J., “Anti-rollover control algorithm for heavy semi-trailer based on lqg,” 2010 IEEE International Conference on Information and Automation, ICIA 2010, pp 1593-1596
    [11] Phanomchoeng, G. and Rajamani, R., “New rollover index for detection of
    tripped and un-tripped rollovers,” Proceedings of the IEEE Conference on Decision and Control, 2011,pp 7440-7445
    [12] Richier, M., Lenain, R., Thuilot, B. and Debain, C., “The research and application of fuzzy control in four-wheel-steering vehicle,” IEEE International Conference on Intelligent Robots and Systems, 2011, pp 4569-4574
    [13] Tsourapas, V., Piyabongkarn, D., Williams, C. and Rajamani, R., “New method of identifying real-time predictive lateral load transfer ratio for rollover prevention systems,” Proceedings of the American Control Conference, 2009, pp 439-444
    [14] Solmaz, S., Corless, M. and Shorten, R., “A methodology for the design of robust rollover prevention controllers for automotive vehicles: part 1-differential braking,” Proceedings of the IEEE Conference on Decision and Contro, 2006, pp 1739-1744
    [15] Ahmadi, J., Ghaffari, A. and Kazemi, R., “Fuzzy logic based vehicle stability enhancement through combined differential braking and active front steering,” Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference - DETC2005, Vol. 6 C, pp 2417-2423
    [16] Wielenga, T. J., “A method for reducing on-road rollovers: anti-rollover braking,” SAE Paper, 1999, No. 1999-01-0123
    [17] Pi, D. W., Chen, N., Zhang, B. J. and Zhong, G. H., “Enhancements in vehicle stability with yaw moment control via differential braking,” ICVES 2009 - 2009 IEEE International Conference on Vehicular Electronics and Safety, 2009, pp 136-140
    [18] Pilutti, T., Ulsoy, A. G. and Hrovat, D., “Vehicle steering intervention through differential braking,” American Control Conference, Vol. 3, No. Suppl, 1996, pp 502-518
    [19] Zhang, S., Zhang, T. and Zhou, S., “Vehicle stability control strategy based on active torque distribution and differential braking,” 2009 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009, Vol. 1, pp 922-925
    [20] Lugner, P., Heinzl, P. and Plochl, M., “Yaw moment control of a passenger car by unilateral braking or additional steering,” Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2000, pp 23-24
    [21] Geng, C., Mostefai, L., Denai, M., and Hori, Y. “Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, 2009, pp 1411-1419
    [22] Lewis, A. S. and El-Gindy, M., “Sliding mode control for rollover prevention of heavy vehicles based on lateral acceleration,” Heavy Vehicle Systems, Vol. 10, No. 1-2, 2003, pp 9-34
    [23] Chung, T. and Yi, K., “An investigation into differential braking strategies on a banked road for vehicle stability control,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221, No. 4, 2007, pp 443-455
    [24] Li, B. and Yu, F., “Vehicle yaw dynamics through combining four-wheel-steering and differential braking,” Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, Vol. 39, No. 12, December 2008, pp 1-4
    [25] Kim, D. H., Kim, C. J., Kim, S. H., Choi, J. Y. and Han, C. S., “Development of adaptive direct yaw-moment control method for electric vehicle based on identification of yaw-rate model,” IEEE Intelligent Vehicles Symposium, Proceedings, 2011, pp 1098-1103
    [26] Wang, S. and Zhang, J., “The research and application of fuzzy control in four-wheel-steering vehicle,” Proceedings - 2010 7th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2010, Vol. 3, 2010, pp 1397-1401
    [27] Ungoren, A. Y. and Peng, H., “An adaptive lateral preview driver model,” Vehicle System Dynamics, Vol. 43, No. 4, April 2005, pp 245-259
    [28] Falcone, F. P., Keviczky, T., Asgari, J. and Hrovat, D., “Mpc-based approach to active steering for autonomous vehicle systems,” International Journal of Vehicle Autonomous Systems, Vol 3, No. 2-4, 2005, pp 265-291
    [29] Seki, Y., Ohya, J. and Miyoshi, M., “Collision avoidance system for vehicles applying model predictive control theory,” IEEE Conference on Intelligent Transportation Systems, Proceedings,ITSC, 1999, pp 453-458
    [30] Bageshwar, V. L., Garrard, W. L. and Rajamani, R., “Model predictive control of transitional maneuvers for adaptive cruise control vehicles,” IEEE Transactions on Vehicular Technology, Vol. 53, No. 5, September, 2004, pp 1573-1585
    [31] Yoshida, H., Shuntaro, S. and Masao, N., “Lane change steering manoeuvre using model predictive control theory,” Vehicle System Dynamics, Vol. 46, Supplement, 2008, pp 669–681
    [32] Di Cairano, S., Tseng, H.E., Bernardini, D. and Bemporad, A., “Steering vehicle control by switched model predictive control,” IFAC Proceedings Volumes (IFAC-PapersOnline), 2010, pp 1-6
    [33] Carlson, C. R. and Gerdes, J. C., “Optimal rollover prevention with steer-by-wire and differential braking,” ASME Dynamics Systems and Control Division, Vol. 72, No. 1, 2003, pp 345-354
    [34] 鄭嘉峰,“透過模型預估偏航轉矩控制法完成車輛翻覆預防,” 國立台灣科技大學機械工程系碩士論文, 2009
    [35] 張哲豪,“大型車輛之適應性翻覆預防控制與啟動時機探討,” 國立台灣科技大學機械工程系碩士論文, 2010
    [36] Ulsoy, A. G. and Peng, H., “Vehicle control system,” Lecture Notes for ME 568, University of Michigan, 1997
    [37] Radojka, K., Sanja, A. and Danilo, S., “Recursive least squares method in parameters identi_cation of dc motors models,” ELEC. ENERG., Vol. 18, No. 3, December 2005, pp 467-478
    [38] 許聖勇,“車輛安全系統研究之大型車輛翻覆預防” 國立台灣科技大學機械工程系碩士論文, 2006
    [39] Salaani, M. K., Peng, H. and Heydinger, G. J., “Vehicle dynamics modeling for the national advanced driving simulator of a 1997 jeep cherokee,” SAE World and Exposition, Detroit, MI. SAE paper, 1999

    QR CODE