簡易檢索 / 詳目顯示

研究生: 蔡德馨
Te-hsin Tsai
論文名稱: 結合3D模擬操弄與角色扮演策略之化學教學遊戲的發展與評估:科技接受度、心流、方向感之分析
The Development and Evaluation of an Educational Chemistry Game Combining 3D Simulation Manipulation with Role playing Strategy: Analysis of Technology Acceptance, Flow, and Sense of Directions
指導教授: 侯惠澤
Huei-tse Hou
口試委員: 陳素芬
none
陳志洪
none
梁玲
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 68
中文關鍵詞: 遊戲模擬操弄3D化學角色扮演科技接受度心流方向感學習成效
外文關鍵詞: 3D, Role Playing, Sense of Directions
相關次數: 點閱:690下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位化時代下,結合了模擬操弄特色與遊戲元素的模擬教育遊戲式學習在科學教育領域上越來越受到重視。模擬教學的操弄的高擬真程度可望有助於學習者對於程序性知識的學習遷移。本研究結合故事情境與角色扮演要素,發展出一款3D模擬操弄角色扮演遊戲「量子禁地」,其提供全視角的三維擬真操作介面以促進學習者對於木炭電池的化學概念與組裝電池的程序知識。本研究並實徵探究學習者運用此遊戲之學習成效、科技接受度與心流狀態,以及這三個維度間彼此的關聯,並探討不同性別、高/低方向感以及不同組裝成功速度的學習者在科技接受度、心流狀態與學習成效上的差異。本研究對象為台灣北部某大學多媒體設計系一年級學生,參與者共60位。研究結果發現,學習者運用本遊戲學習後其學習成效達到顯著的進步,且對於本遊戲的科技接受度與心流狀態的各個維度都有達到中位數以上的表現。本研究也發現心流狀態與科技接受度達到正相關。不同性別與方向感的學習者,在科技接受度與後測成績上皆無顯著差異,表示本遊戲應可適用於不同性別與方向感的學習者。另外,本研究也初步分析科技接受度、心流狀態與方向感各維度間存在彼此影響的路徑模型。本研究並提出相關的建議供教育遊戲開發者與研究者參考。


    In the age of digitalization, game-based learning combining the feature of simulation manipulation and game elements is getting more and more emphasis in the field of science education. A high authentic manipulation in simulation instruction is expected to help learners’ learning transfer of procedural knowledge. This study combined story scenarios and the element of role playing. developed a game “量子禁地” which integrated with 3D simulation manipulation and the role playing strategy. With the provision of the interface of 3D realistic operation with 720-degree field of vision, this game promoted learners’ chemical concepts of charcoal battery and the procedural knowledge of battery assembly. Moreover, this empirical study explored learners’ learning effectiveness, technology acceptance, flow state, and the correlations between these three dimensions after learners used this game. In addition, this study explored the difference in technology acceptance, flow state, and learning effectiveness between the learners with different genders, high or low sense of directions, and different speed of successful battery assembly. The participants in this study were 60 freshmen majoring in the Department of Multimedia Design in a university in northern Taiwan. The results indicated that after using this game, learners made significant progress in their learning outcomes; also, their performance of all dimensions in technology acceptance and flow state was above the median. Additionally, a positive correlation between learners’ flow state and technology acceptance was found. No significant difference was observed between technology acceptance and the posttest scores for learners with different genders and sense of directions, indicating this game could be applied to the learners with different genders and sense of directions. Moreover, this study preliminarily analyzed the path model among the dimensions of technology acceptance, flow state, sense of directions. Finally, the relevant suggestions were provided as references for educational game developers and researchers.

    摘要 I ABSTRACT II 目錄 III 圖次 VI 表次 VII 第壹章 緒論 1  第一節 研究背景與動機 1  第二節 研究目的與研究問題 6 第貳章 文獻探討 7  第一節 電腦輔助實驗室學習 7      一、電腦輔助化學學習 7      二、電腦輔助化學學習相關研究 8  第二節 電腦遊戲輔助教學 10      一、電腦輔助遊戲教學 10  第三節 角色扮演教學 12      一、角色扮演之定義 12      二、角色扮演教學相關之研究 13  第四節 心流狀態 14  第五節 方向感 16      一、方向感之定義 16      二、方向感相關之研究 16 第参章 研究方法 17  第一節 研究設計 17  第二節 研究對象 17  第三節 研究工具 17      一、遊戲系統 17       (一) 設計理念 18       (二) 遊戲前導介面 19       (三) 操作介面 22       (四) 系統簡介與操作流程 25      二、心流評量 30      三、科技接受度評量問卷 31      四、學習成效評量問卷 32      五、方向感評量問卷 33  第四節 研究程序 34  第五節 資料蒐集與分析 35 第肆章 研究結果 36  第一節 大學生對於「量子禁地」遊戲之學習成效、心流程度與科技接受         度 36      一、心流狀態 36      二、科技接受度 37      三、學習成效 39  第二節 不同性別的學習者在心流狀態、科技接受度與學習成效的差異         40  第三節 方向感能力高低分組的學習者在心流狀態、科技接受度與學習成         效的差異 42  第四節 前、後27%組裝時間的學習者在心流狀態、科技接受度與前後測的差異 44  第五節 心流狀態與科技接受度、學習成效間之關連與路徑分析 46      一、相關分析 46      二、路徑分析 47 第伍章 討論 49  第一節 學生運用本遊戲學習後之心流、科技接受度、學習成效為何? 49  第二節 不同性別的心流、科技接受度、學習成效之差異為何? 51  第三節 高低方向感的心流、科技接受度、學習成效之差異為何? 51  第四節 不同時間完成第一次組裝的學習者其心流、科技接受度、學習成         效之差異為何? 52  第五節 心流、科技接受度、學習成效、方向感之間的關聯與路徑模式為         何? 52 第陸章 結論與建議 54  第一節 結論 54  第二節 建議 55      一、遊戲系統發展方面 55      二、教學實務運用方面 55      三、未來研究上的建議 56 參考文獻 57 圖次 圖3-1 遊戲前導介面示意圖 20 圖3-2 遊戲操作介紹示意圖 20 圖3-2 遊戲劇情介紹示意圖 21 圖3-4 遊戲空間構成示意圖 21 圖3-5 遊戲操作介面示意圖 22 圖3-6 合成介面示意圖 23 圖3-7 地圖介面示意圖 24 圖3-8遭遇怪物示意圖 25 圖3-9知識提示之示意圖 27 圖3-10 3D空間示意圖 28 圖4-1路徑分析圖 48 表次 表 3-1 教學機制與學習理論對照表 19 表 3-2 組裝步驟 29 表 3-3 KIILI (2006)心流評量問卷 30 表 3-4 科技接受度評量問卷 31 表 3-5 學習成效評量問卷 32 表 3-6 方向感評量問卷 33 表 3-7 實驗流程表 34 表 4-1 心流狀態之平均數與標準差 37 表 4-2 認知有用性與認知易用性題目答題分佈表 38 表 4-3 整體認知有用性與認知易用性平均數與標準差 38 表 4-4 大學生對於「量子禁地」遊戲之學習成效 39 表 4-5 性別對於心流狀態、科技接受度與前後測的差異 41 表 4-6 方向感對於科技接受度與心流狀態的差異 43 表 4-7 前、後27%組裝時間的學習者在心流狀態、科技接受度與 前後測的差異 45 表 4-8 心流狀態、科技接受度、方向感、前後測之關聯分析 47 表 4-9路徑分析結果 48

    周逸璇(2012)。結合角色扮演策略與模擬情境的高中電磁鐵數位教學遊戲之發展與評估。國立臺灣科技大學數位學習與教育研究所,未出版,台北市。
    吳翊瑄(2013)。結合角色扮演與問題解決策略之模擬化學實驗教學遊戲之發展與評估:心流、科技接受度與學習歷程分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
    許涵雅(2013)。結合問題解決與情境故事的角色扮演歷史教學遊戲的發展與評估:玩家接受度、心流、學習成效以及地方感之分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
    Alessi, S. M., & Trollip, S. R., (2001). Multimedia for Learning: Methods and Development (3rd Edition). Massachusetts: A Pearson Education Company..
    Alberto, P., & Troutman, A. C. (1999). Applied behavior analysis for teachers (5th ed.). Upper Saddle River, N.J.: Merrill.
    Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school. Washington, D.C.: National Academy Press.
    Brown, E., & Cairns, P. (2004).A grounded investigation of game immersion. ACM Magazines, 1297-1300.
    Bakar, H. N. B., & Zaman, H. H. B. (2007). Development of VLab-Chem for Chemistry subject based on Constructivism-Cognitivism-Contextual approach. In: Proceedings of the International Conference on Electrical Engineering and Informaticts, ICCCE. School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia, 568-571.
    Bos, N. (2001). What do game designers know about scaffolding? Borrowing SimCity design principles for education. Retrieved April 18, 2014, from http://playspace.concord.org/Documents/Learning%20from%20SIMCITY.pdf.
    Bennett, M. E. (1963). Guidance and Counseling in groups. New York: McGraw-Hill.
    Brown, J. S., Collins, A., & Duguid, P. (1989). Situated Cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
    Bokyeong, K., Hyungsung, P., & Youngkyun, B. (2009). Not just fun, but serious strategies: Using meta-cognitive strategies in game-based learning. Computers & Education, 52(4), 800-810.
    Baltzis, K. B., & Koukias, K. D. (2009). using laboratory experiments and circuit simulation IT tools in an undergraduate course in analog electronics. Journal of Science Education and Technology, 18(6), 546-555.
    Barab, S. A., Pettyjohn, P., Gresalfi, M., Volk, C., & Solomou, M. (2012). Game-based curriculum and transformational play: Designing to meaningfully position person, content, and context. Computers & Education, 50, 518-533
    Bressler , D, M., & Bodzin, A. M. (2013). A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. Journal of Computer Assisted Learning, 29(6), 505–517.
    Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-Bass.
    Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. New York: Harper Perennial.
    Choi, B., & Gennaro, E. (1987). The effectiveness of using computer simulated experiments on junior high students' understanding of the volume displacement concept. Journal of Research in Science Teaching , 6, 539-552.
    Chang, Y. C., Peng, H. Y., & Chao, H. C. (2010). Examining the effects of learning motivation and of course design in an instructional simulation game. Interactive Learning Environments, 18(4), 319-339.
    Cheng, C. H., & Su, C. H. (2012). A Game-based learning system for improving student’s learning effectiveness in system analysis course. Procedia - Social and Behavioral Sciences , 31, 669–675.
    Cheng, S. M., & Lin, S. S. J. (2014). Team knowledge with motivation in a successful MMORPG game team: A case study. Computers & Education , 73, 129–140.
    Chen, M. P., Wong, Y. T., & Wang, L. C. (2014). Effects of type of exploratory strategy and prior knowledge on middle school students’ learning of chemical formulas from a 3D role-playing game. Educational Technology Research and Development, 62(2), 163-185.
    Dewey, J. (1910). How we think. Mineola. New York: Dover Publications, Inc., Mineola, NY.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quartely, 13(3), 319-39.
    Dalgarno, B. (2004). Characteristics of 3D environments and potential contributions to spatial learning. PhD thesis, University of Wollongong, Australia.
    Freitas, S. D., & Griffiths, M. (2007). Online gaming as an educational tool in learning and training. British Journal of Educational Technology, 38(3), 535-537.
    Goldstein, C., Leisten, S., Stark, K., & Tickle, A. (2005). Using a network simulation tool to engage students in active learning enhances their understanding of complex data communications concepts. Proceedings of the 7th Australasian Conference on Computing Education, Newcastle, Australia, 223-228.
    Gorghiu , L. M., Gorghiu, G., Alexandrescu, T., & Borcea, L. (2009). Exploring Chemistry Using Virtual Instrumentation - Challenges and Successes. In A. Mendez-Vilas, A. Solano Martin, J. A. Mesa Gonzalez, & J. Mesa Gonzalez (Eds.), Research, Reflections and Innovations in Integrating ICT in Education, vol. 1 (pp. 371–375). FORMATEX, Badajoz, Spain.
    Harrison, T. G., Shallcross, D. E., Heslop,W. J., Eastman J. R., & Baldwin, A. J. (2009). Transferring Best Practice From Undergraduate Practical Teaching To Secondary Schools: The Dynamic Laboratory Manual. Acta Didactica Napocensia, 2(1), 1-8.
    Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers & Education, 59(4), 1246-1256.
    Hawkins, I., & Phelps, A. J. (2013). Virtual laboratory vs traditional laboratory: which is more effective for teaching electrochemistry? Chemistry Education Research and Practice, 14, 516-523.
    Heth, C. D., Cornell, E. H., & Flood, T. L. (2002). Self-ratings of direction and route reversal performance. Applied cognitive psychology, 16, 309-324.
    Hund, A. M., & Nazarczuk, S. N. (2009). The effects of sense of direction and training experience on wayfinding efficiency. Journal of Environmental Psychology, 29(1), 151-159.
    Hou, H. T., Wang, S. M., & Tsai, D. S. (2013). The Development and Evaluation of a 3D Simulation Game for Chemistry Learning: Exploration of Learners Flow, Acceptance, and Sense of Directions. Paper presented at the 21th International Conference on Computers in Education (ICCE2013), Bali, Indonesia, November 18-22.
    Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-Report measure of environmental spatial ability. Intelligence, 30(5), 425-447.
    Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers and Education, 58, 4, 1225-1233.
    Inal, Y., & Cagiltay, K. (2007). Flow experiences of children in an interactive social game environment. British Journal of Educational Technology, 38(3), 455-464.
    Jimoyiannis, A., & Komis, V. (2001). Computer simulations in teaching and learning physics: A case study concerning students’ understanding of trajectory motion. Computers & Education, 36(2), 183-204.
    Kirriemuir, J. & McFarlane, A. (2004). Literature review in games and learning. Bristol: Nestafuturelab.
    Kiili, K. (2005). Digital game-based learning towards an experiential gaming model. Internet and Higher Education, 8, 13-24.
    Kinzie, M. B., Strauss, R., & Foss, J. (1993). The effects of an interactive dissection sim- ulation on the performance and achievement of high school biology students. Journal of Research in Science Teaching, 30, 989-1000.
    Kennepohl, D. (2001). Using computer simulations to supplement teaching Lab. in chemistry for distance delivery. The Journal of Distance Education, 16(2), 58-65.
    Kiili, K. (2006). Evaluations of an experiential gaming model. An Interdisciplinary Journal on Humans in ICT Environments, 2(2), 187-201.
    Kiili, K. (2007). Foundation for problem-based gaming. British Journal of Educational Technology, 38(3), 394-404.
    Kozlowski, L. T., & Bryant, K. J. (1977). Sense of direction, spatial orientation, and cognitive maps. Journal of Experimental Psychology: Human Perception and Performance, 3, 590–598.
    Limniou, M., Papadopoulos, N., & Whitehead, C. (2009). Integration of simulation into pre-laboratory chemical course: Computer cluster versus WebCT. Computers & Education, 52(1), 45-52.
    Limniou, M., Papadopoulos, N., Giannakoudakis, A., Roberts, D., & Otto, O. (2007). The Integration Of A Viscosity Simulator In A Chemistry Laboratory Chemistry. Education Research and Practice, 8, 2, 220-231.
    Liu, C. C., Cheng, Y. B., & Huang, C. W. (2011). The effect of simulation games on the learning of computational problem solving. Computers & Education, 57(3), 1907–1918.
    Malone, T. W., & Lepper, M. R. (1987). Making learning fun : Ataxonomy of intrinsic motivations for learning. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning, and instruction: Vol. 3. Conative and affective process analyses (pp. 223-253). Hillsdale, NJ: Lawrence Erlbaum.
    Mitchell, A., & Savill-Smith, C. (2004). The use of computer and video games for learning: A review of literature. London: Learning and Skills Development Agency.
    Macaulay, M. (2004). The speed of mouse-click as a measure of anxiety during human-computer interaction. Behavior and Information Technology, 23(6), 427-433.
    Moreno, J. D. (1920). Role Playing. Retrieved April 3, 2014, from http://www.blatner.com/adam/pdntbk/rlplayedu.htm.
    Maccoby, E., & Jacklin, C. N. (1974). The Psychology of Sex Difference. Stanford: Stanford University Press.
    Martinez-Jimenez, P., Pontes-Pedrajas, A., Polo, J., & Climent-Bellido, M. S. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80(3), 346-352
    Meluso, A., Zheng, M., Spires, H., & Lester, J. (2012). Enhancing 5th graders' science content knowledge and self-efficacy through game-based learning. Computers and Education, 59, 497-504.
    Oloruntegbe, K. O., & Alam, G. M. (2010). Evaluation of 3D environments and virtual realities in science teaching and learning: The need to go beyond perception referents. Scientific Research and Essays, 5(9), 948-954.
    Pivec, M., Dziabenko, O., & Schinnerl, I. (2003). Aspects of Game-Based Learning. The Third International Conference on Knowledge Management, Graz, Austria, July.
    Prensky, M. (2003). Digital game-based learning. Computers in Entertainment, 1(1), 21-21.
    Prensky, M. (2007). Digital Game-Based Learning. New York: McGraw-Hill.
    Paraskeva, F., Mysirlaki, S., & Papagianni, A. (2010). Multiplayer online games as educational tools: Facing new challenges in learning. Computers & Education, 54(2), 498-505.
    Pasin, F., & Giroux, H. (2011). The impact of a simulation game on operations management education. Computers & Education, 57(1), 1240–1254.
    Pantidos, P., Spathi, K., & Vitoratos, E. (2001). The use of drama in science education: The case of “Blegdamsvej Faust”. Science & Education, 10, 107-117.
    Prensky, M., & Thiagarajan, S. (2007). Digital game-based learning. St. Paul, MN: Paragon House.
    Pyatt , K., & Sims , R. (2012). Virtual and Physical Experimentation in Inquiry-Based Science Labs: Attitudes, Performance and Access. Journal of Science Education and Technology , 21(1), 133-147.
    Raybourn, E. M., & Bos, N. (2005). Design and evaluation challenges of serious games. Proceeding of the SIGCHI conference on Human factors in computing systems, 2049-2050.
    Romli, R., Awang Abu Bakar, N. A., & Shiratuddin, M. F. (2001). The Virtual Lab (Physics & Chemistry) for Malaysia’s Secondary School. Proceedings of the International Conference on Information Technology and Multimedia at UNITEN (ICIMU 2001) Recent Advances and Future Trends in Information Technology and Multimedia 13th – 15th August , Selangor, Malaysia.
    Sandford, R., & Williamson, B. (2005). Games and learning. Retrieved October 3, 2014, from http://www.futurelab.org.uk/research/handbooks/03_01.htm.
    Sedighian, K., & Sedighian, A. S. (1996). Can Educational Computer Games Help Educatiors Learn About the Psychology of Learning Mathematics in Children? 18th Annual Meeting of International Group for the Psychology of Mathematics Education – the North American Chapter, Florida, USA.
    Luk, E. T. H., Wong, M. K. H., Cheung, K. K. F., Lee, F. L., & Lee, J. H. M. (2006). Design and Implementation of Farmtasia: A Game Designed for the VISOLE Teaching Style. Lecture Notes in Computer Science, 3942, 566-571.
    Susaeta, H., Jimenez, F., Nussbaum, M., Gajardo, I., Andreu, J. J., & Villalta, M. (2010). From MMORPG to a classroom multiplayer presential role playing game. Educational Technology & Society, 13 (3), 257–269.
    Shaftel, F. R., & Shaftel, G. (1967). Role-playing for social values: decision-making in the social studies. Prentice-Hall.
    Squire, K. (2005). Game-based learning: Present and future state of the field. Saratoga Springs, NY: Masie Center e-Learing Consortium.
    Schaik, P., Martin, S., & Vallance, M. (2011). Measuring flow experience in an immersive virtual environment for collaborative learning. Journal of Computer Assisted Learning, 28(4), 350–365.
    Suzuki, I. (2012). Effects of sense of direction on Internet skill and cognitive maps of the Web. Computers in Human Behavior, 28(1), 120–128.
    Tuysuz, C. (2010). The Effect of the Virtual Lab. on Students’ Achievement and Attitude in Chemistry. International Online Journal of Educational Sciences, 2(1), 37-53.
    Tan, J., & Biswas, G. (2007). Simulation-Based Game Learning Environments: Building and Sustaining a Fish Tank. Proceedings of The First IEEE International Workshop on Digital Game and Intelligent Toy Enhanced Learning, March, Jhongli, Taiwan.
    Vogel, J. F., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright, M. (2006). Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing Research, 34(3), 229-243.
    Winberg, T. M., & Berg, C. A. R. (2007). Students' cognitive focus during a chemistry laboratory exercise: Effects of a computer-simulated prelab. Journal of Research in Science Teaching, 44(8), 1108-1133.
    Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET Simulations That Enhance Learning. Science, 322, 682-683.
    Webster, J., Trevino, K. L., & Ryan, L. (1993). The dimensionality and correlated of flow in human-computer interactions. Computer in Himan Behavior, 9(4), 411-426.
    Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.
    Wiebe, E. N., Lamb, A., Sharek, D. (2014) Measuring engagement in video game-based environments: Investigation of the User Engagement Scale. Computers in Human Behavior, 32, 123–132.
    Yehezkel, C., Eliahu, M., & Ronen, M. (2009). Easy CPU: Simulation-based Learning of Computer Architecture at the Introductory Level. International Journal of Engineering Education 25(2), 228–238
    Yusof, Y., Sanusi, H., & Mat, K. (2011). Computer Simulation as Preparation for Electronics Laboratory. Procedia - Social and Behavioral Sciences, 60, 397–404.

    無法下載圖示 全文公開日期 2019/06/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE