簡易檢索 / 詳目顯示

研究生: 蘇俊瑋
Jyun-Wei Su
論文名稱: 可重構方塊機構之重構分析
Reconfiguration Analysis of a Reconfigurable Cube Mechanism
指導教授: 郭進星
Chin-Hsing Kuo
口試委員: 陳達仁
Dar-Zen Chen
徐正會
Jenq-Huey Shyu
鍾俊輝
Chun-hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 126
中文關鍵詞: 可重構機構可變拓樸機構構造同構構形同構螺旋理論
外文關鍵詞: Variable topology mechanism, Structural isomorphism, Configuration isomorphism, Configuration transformation, screw theory
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可重構方塊機構(Reconfigurable cube mechanism)為一個由八個正方體組成的益智玩具,藉由特殊的構形設計,該機構可於操作過程中不斷變化構形,並配合各正方體表面之圖案安排,於構形變化時展現多幅不同畫作。雖然可重構方塊機構蘊含著豐富且有趣的機構學理,然而,目前卻尚未有任何關於可重構方塊機構的研究被發表。因此,本論文即以可重構方塊機構為研究目標,以機構學理的角度出發,探討該機構的構形特性與重構原理。首先,本研究將探討可重構方塊機構的拓樸構造與構形特性,提出一種構形矩陣表示法,適當地表示可重構方塊機構的拓樸構形,並以此表示法為基礎,建立機構構造同構判認方法。接著,利用螺旋理論(Screw theory)表示機構接頭,據此分析機構各狀態下的可動度(Mobility),並探討接頭間的軸向與位置關係,發展該機構的構形同構判認法。最後,本研究設計一可重構方塊機構之構形轉換演算法,可由一給定之機構初始構形,計算出所有可行的變化構形。本研究成果期可為可重構方塊機構之創新設計提供學理基礎與參考。


    Reconfigurable cube mechanism (RCM) is a brainstorming puzzle made by eight connecting cubes. Owing to its special configuration characteristics, the topological configuration of the mechanism can be changed over during operation associated with the changes of the patterns on cube surfaces. Though there are lots of mechanism theories arisen from such a mechanism, the study on the RCM is extremely rare. Therefore, based on the theory of mechanism and machine science, this thesis is devoted to studying the configuration characteristics and reconfiguration theory of the RCM. First, the topology and configuration characteristics of the RCM is investigated, where a matrix representation for representing the topological configuration of the RCM is proposed. Accordingly, a method for the identification of structural isomorphism of the RCM is presented. Then, by following screw theory, the configuration of the RCM is represented as a screw system matrix, whereby the mobility of the mechanism is investigated and the relative orientations and positions between the joints are recognized. Based on this, a method for identifying the configuration isomorphism of the RCM is developed. Last, a computational approach for determining all possible configurations of the RCM from a given initial configuration is put forward. It is expected that the outcome of this work is contributive for the creative design of reconfigurable cube mechanisms.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 可重構方塊機構簡介 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 可變拓樸機構之源起與定義 3 1.3.2 可變拓樸機構之益智遊戲與藝術品 4 1.3.3 可變拓樸機構之構造分析 5 1.4 研究目的 10 1.5 論文架構 11 第二章 可重構方塊機構 13 2.1 幾何外形 13 2.2 拓樸構造 13 2.3 機構構形 16 2.4 構形變換 17 2.5 圖畫變化 21 2.6 小結 26 第三章 構形矩陣表示法 28 3.1 單拓樸構造之矩陣表示法 28 3.2 多拓樸構造之矩陣表示法 29 3.3 可重構方塊機構之構形矩陣 34 3.3.1 方法說明 35 3.3.2 範例 36 3.4 小結 39 第四章 構造同構判認 40 4.1 構造同構判認法 40 4.2 範例 41 4.3 小結 49 第五章 構形分析 50 5.1 構形特性 50 5.2 重構特性 52 5.3 圖畫配置特性 54 5.4 小結 57 第六章 可動度分析 58 6.1 接頭螺旋 58 6.2 各狀態之可動度 60 6.3 小結 63 第七章 構形同構判認 64 7.1 構形同構判認法 64 7.2 範例 69 7.3 小結 76 第八章 構形轉換分析 77 8.1 構形轉換演算法 77 8.2 範例 88 8.3 小結 100 第九章 結論與未來展望 101 9.1 結論 101 9.2 未來展望 103 參考文獻 104 附錄一 可重構方塊機構操作影片連結 109 附錄二 可重構方塊機構之梵谷畫作說明 110

    [1] Kuo, C. H., Dai, J. S., Yan, H. S., 2009, “Reconfiguration Principles and Strategies for Reconfigurable Mechanisms,” ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, June 22-24, London, UK, pp. 1-7.
    [2] Yan, H. S., Kuo, C. H., 2006, “Representations and Identifications of Structural and Motion State Characteristics of Mechanisms with Variable Topologies,” Transactions of the Canadian Society for Mechanical Engineering, 30(1), pp. 19-40.
    [3] Dai, J. S., Rees Jones, J., 1999, “Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds,” ASME Journal of Mechanical Design, 121(3), pp. 375-382.
    [4] Yan, H. S., Liu, N. T., 2000, “Finite-State-Machine Representations for Mechanisms and Chains with Variable Topologies,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, September 10-13, Baltimore, Maryland, USA.
    [5] Liu, N. T., 2001, “Configuration Synthesis of Mechanisms with Variable Chains,” Ph.D. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [6] Wohlhart, K., 1996, “Kinematotropic Linkages,” in Lenarcic, J. and Parenti-Castelli, V., (eds.), Recent Advansces in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, pp. 359-368.
    [7] Galletti, C., Fanghella, P., 2001, “Single-loop Kinematotropic Mechanisms,” Mechanism and Machine Theory, 36(6), pp. 743-761.
    [8] Galletti, C., Giannotti, E., 2002, “Multiloop Kinematotropic Mechanisms,” ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference, September 29-October 2, Montreal, Canada, pp. 455-460.
    [9] Fanghella, P., 2009, “Stability of Branches of a Kinematotropic Mechanism,” ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, June 22-24, London, UK, pp. 41-46.
    [10] Dai, J. S., Li, D., Zhang, Q., Jin, G., 2004, “Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis,” Mechanism and Machine Theory, 39(4), pp. 445-458.
    [11] Ghrist, R., Peterson, V., 2007, “The Geometry and Topology of Reconfiguration,” Advances in Applied Mathematics, 38(3), pp. 302-323.
    [12] Ding, X., Yang, Y., 2010, “Reconfiguration Theory of Mechanism From a Traditional Artifact,” ASME Journal of Mechanical Design, 132(11), pp. 114501(1-8).
    [13] Wei, G., Ding, X., Dai, J. S., 2010, “Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant,” ASME Journal of Mechanisms and Robotics, 2(3), pp. 031010(1-9).
    [14] Wei, G., Ding, X., Dai, J. S., 2011, “Geometric Constraint of an Evolved Deployable Ball Mechanism,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, 5(4), pp. 302-314.
    [15] Ding, X., Yang, Y., Dai, J. S., 2013, “Design and Kinematic Analysis of a Novel Prism Deployable Mechanism,” Mechanism and Machine Theory, 63, pp. 35-49.
    [16] Yan, H. S., Liu, N. T., 2003, “Joint-Codes Representations for Mechanisms and Chains with Variable Topologies,” Transactions of the Canadian Society for Mechanical Engineers, 27(1&2), pp. 131-143.
    [17] Yan, H. S., Hwang, Y. W., 1991, “The Specialization of Mechanisms,” Mechanism and Machine Theory, 26(6), pp. 541-551.
    [18] Lan, Z. H., Du, R., 2008, “Representation of Topological Changes in Metamorphic Mechanisms With Matrices of the Same Dimension,” ASME Journal of Mechanical Design, 130(7), pp. 074501(1-4).
    [19] Yan, H. S., Kuo, C. H., 2006, “Topological Representations and Characteristics of Variable Kinematic Joints,” ASME Journal of Mechanical Design, 128(2), pp. 384-391.
    [20] Slaboch, B. J., Voglewede, P. A., 2011, “Mechanism State Matrices for Planar Reconfigurable Mechanisms,” ASME Journal of Mechanisms and Robotics, 3(1), pp. 011012(1-7).
    [21] Korves, B. A., Slaboch, B. J., Voglewede, P. A., 2012, “Mechanism State Matrices for Spatial Reconfigurable Mechanisms,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 12-15, Chicago, IL, USA.
    [22] Chang, L. Y., Kuo, C. H., 2012, “On the Matrix Representation Methods for Variable Topology Mechanisms,” The 2nd ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, July 9-11, Tianjin, China, pp. 73-81.
    [23] Chang, L. Y., 2012, “Structural Decomposition and Homomorphism Identification of Mechanisms with Variable Topologies,” Master Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [24] Yim, M., Shen, S. M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G. S., 2007, “Modular Self-Reconfigurable Robot Systems: Grand Challenges of Robotics,” IEEE Robotics & Automation Magazine, 14(1), pp. 43-52.
    [25] Ding, X., Lv, S., Yang, Y., 2011, “Configuration Transformation Theory from a Chain-type Reconfigurable Modular Mechanism-Rubik’s Snake,” The 13th World Congress in Mechanism and Machine Science, June 19-25, Guanajuato, Mexico.
    [26] Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S., 2002, “M-TRAN: Self-Reconfigurable Modular Robotic System,” IEEE/ASME Transactions on Mechatronics, 7(4), pp. 431-441.
    [27] Salemi, B., Moll, M., Shen, W. M., 2006, “SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, October 9-15, Beijing, China, pp. 3636-3641.
    [28] Zykov, V., Mytilinaios, E., Desnoyer, M., Lipson, H., 2007, “Evolved and Designed Self-Reproducing Modular Robotics,” IEEE Transactions on Robotics, 23(2), pp. 308-319.
    [29] Lyder, A., Petersen, H. G., Stoy, K., 2009, “Representation and Shape Estimation of Odin, A Parallel Under-Actuated Modular Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems, October 10-15, St. Louis, Mossouri, USA, pp. 5275-5280.
    [30] Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J., 2009, “Roombots-Mechanical Design of Self-Reconfiguring Modular Robots for Adaptive Furniture,” IEEE International Conference on Robotics and Automation, May 12-17, Kobe, Japan, pp. 4259-4264.
    [31] Liu, J., Wang, Y., Ma, S., Li, Y., 2010, “Enumeration of the Non-Isomorphic Configurations for a Reconfigurable Modular Robot with Square-Cubic-Cell Modules,” International Journal of Advanced Robotic Systems, 7(4), pp. 58-68.
    [32] Harary, F., 1969, Graph Theory, Addison–Wesley, Reading, MA.
    [33] Tsai, L. W., 2001, Mechanism Design: Enumeration of Kinematic Structures According to Function, CRC Press LLC, Boca Raton, Florida.
    [34] Zhang, K. T., Dai, J. S., Fang, Y. F., Zeng, Q., 2011, “String Matrix Based Geometrical and Topological Representation of Mechanisms,” The 13th World Congress in Mechanism and Machine Science, June 19-25, Guanajuato, Mexico.
    [35] Uicker, J. J., Raicu, A., 1975, “A Method for the Identification and Recognition of Equivalence of Kinematic Chains,” Mechanism and Machine Theory, 10(5), pp. 375-383.
    [36] Yan, H. S., Hall, A. S., 1981, “Linkage Characteristic Polynomials: Definitions, Coefficients by Inspection,” ASME Journal of Mechanical Design, 103(3), pp. 578-584.
    [37] Yan, H. S., Hall, A. S., 1982, “Linkage Characteristic Polynomials: Assembly Theorems, Uniqueness,” ASME Journal of Mechanical Design, 104(1), pp. 11-20.
    [38] Harary, F., 1964, “Combinatorial Problems In Graphical Enumeration,” Beckenbach, E. F., ed., Applied Combinatirial Mathematics, John Wiley & Sons, New York, NY.
    [39] Tsai, L. W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, New York, NY.
    [40] Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Oxford University Press, Oxford.
    [41] Kuo, C. H., Yan, H. S., 2007, “On the Mobility and Configuration Singularity of Mechanisms with Variable Topologies,” ASME Journal of Mechanical Design, 129(6), pp. 617-624.
    [42] Waldron, K. J., 1966, “The Constraint Analysis of Mechanisms,” Journal of Mechanisms, 1(2), pp. 101-114.

    無法下載圖示 全文公開日期 2018/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE