簡易檢索 / 詳目顯示

研究生: 張隆裕
Lung-Yu Chang
論文名稱: 可變拓樸機構之構造分解與同形判認
Structural Decomposition and Homomorphism Identification of Mechanisms with Variable Topologies
指導教授: 郭進星
Chin-Hsing KUO
口試委員: 王勵群
Li-Chun T. Wang
謝文賓
Win-Bin Shieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 88
中文關鍵詞: 可變拓樸機構構造分解拓樸同形同構度
外文關鍵詞: Mechanism with variable topologies, structural decomposition, Topological homomorphism, Degree of isomorphism
相關次數: 點閱:238下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當機構在操作的過程中,無法以單一拓樸構造描述,此時稱該機構為可變拓樸機構(Mechanism with variable topologies, MVTs)。本文旨在針對可變拓樸機構之拓樸構造表示法、構造分解與拓樸同形判認進行研究。首先,回顧可變拓樸機構與可變接頭之發展,歸納整理現有常見的機構構造表示法,並比較其差異。接著,提出可同時記錄機構潛在限制條件與拓樸構造之矩陣表示法,並據此發展出一種適用於可變拓樸機構的構造分解方法,以有效判認出一可變拓樸機構之所有拓樸構造。本方法並嘗試使用新的可變接頭數碼化規則,藉此將可變拓樸機構之拓樸構造以及構造分解流程以數學方法運算。最後,本研究討論可變拓樸機構之構造相似性,以拓樸同形(Topological homomorphism)的觀點出發,探討兩可變拓樸機構間同構的程度,並提出同構度(Degree of isomorphism)概念加以量化說明。


    A mechanism that has multiple topological structures during operation process is called a mechanism with variable topology (MVT). This work is devoted to the study of structural representation, decomposition and homomorphism identification of MVTs. First, we review and compare the common structural representation methods of variable joints and variable topology mechanisms. Then, we purpose a new matrix representation method that can record the potential motion constraints and the topological structures of MVTs simultaneously. Furthermore, we provide a coding method to digitalize the motion constraints and topological structures of MVTs, through which the topology of MVTs can be mathematically recorded and manipulated. Accordingly, a new structural decomposition method is presented for recognizing all possible topological structures in an MVT when only the source mechanism of the MVT is available. Finally, we study the isomorphism problem of MVTs, based on the concept of topological homomorphism, providing an index namely degree of isomorphism to identify the topological homomorphism between two MVTs. The results of this study provide a foundation work for the structural analysis of mechanisms with variable topologies.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 可變拓樸機構簡介 1 1.2 文獻回顧 2 1.3 研究動機與目的 6 1.4 論文架構 7 第二章 可變拓樸機構 9 2.1 可變接頭 9 2.1.1 限制條件 11 2.1.2 可變接頭表示法 14 2.2 可變運動鏈 15 2.3 可變拓樸機構分類 18 第三章 拓樸構造表示法 25 3.1 機構模型表示法 25 3.2 圖畫表示法 26 3.3 矩陣表示法 28 3.3.1 單一拓樸構造之矩陣表示法 28 3.3.2 多拓樸構造之矩陣表示法 32 3.4 操作空間表示法 36 第四章 構造分解 38 4.1 現有構造分解方法 38 4.2 以限制條件為基礎之構造分解方法 43 4.2.1 限制矩陣(Constraint matrix) 44 4.2.2 子限制矩陣(Sub-constraint matrix) 47 4.2.3 數碼化子限制矩陣(Digitalized sub-constraint matrix) 49 4.2.4 數碼化子機構拓樸矩陣(Digitalized sub-topology matrix) 52 4.2.5 子機構拓樸矩陣(Sub-topology matrix) 53 4.2.6 機構簡圖 54 4.2.7 可行性判斷 56 第五章 拓樸同形判認 58 5.1 拓樸同構 58 5.2 拓樸同形 59 5.3 同構度(Degree of Isomorphism) 59 5.4 同構度計算流程 62 5.5 範例說明 63 5.5.1同構度等於1 63 5.5.2同構度介於0到1 70 5.5.3同構度等於0 77 5.6小結 80 第六章 結論與建議 81 6.1 結論 81 6.2 建議 82 參考文獻 84 作者簡介 88

    [1] Yan, H. S., Kuo, C. H., 2006, “Topological Representations and Characteristics of Variable Kinematic Joints,” ASME Journal of Mechanical Design, 128(2), pp. 384-391.
    [2] Liu, N. T., 2001, “Configuration Synthesis of Mechanisms with Variable Chains,” Ph.D. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [3] Li, S., Dai, J. S., 2012, “Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups,” ASME Journal of Mechanisms and Robotics, 4(3), pp. 031004(1-8).
    [4] Dai, J. S., Rees Jones, J., 1999, “Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds,” ASME Journal of Mechanical Design, 121(3), pp. 375-382.
    [5] Yan, H. S., Liu, N. T., 1999, “Configuration Synthesis of One Step Push-Button Stopper Lock with Variable Passwords,” The 10th World Congress on the Theory of Machine and Mechanisms, June 20-24, Oulu, Finland.
    [6] Yan, H. S., Liu, N. T., 2000, “Finite-State-Machine Representations for Mechanisms and Chains with Variable Topologies,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, September 10-13, Baltimore, Maryland.
    [7] Liu, N. T., Yan, H. S., 2003, “Joint-Codes Representations for Mechanisms and Chains with Variable Topologies,” Transactions of the Canadian Society for Mechanical Engineers, 27(1&2), pp. 131-143.
    [8] Kuo, C. H., 2004, “Structural Characteristics of Mechanisms with Variable Topologies Taking into Account the Configuration Singularity,” Master Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [9] Kang, C. H., 2008, “Configuration Synthesis of Mechanisms with Variable Topologies,” Ph.D. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [10] Yan, H. S., Kang, C. H., 2009, “Configuration Synthesis of Mechanisms with Variable Topologies,” Mechanism and Machine Theory, 44(5), pp. 896-911.
    [11] Yan, H. S., Kang, C. H., 2009, “Configuration Transformations of Mechanisms with Variable Topologies,” Journal of Chinese Society of Mechanical Engineers, 30(4), pp. 311-321.
    [12] Yan, H. S., Kuo, C. H., 2006, “Representations and Identifications of Structural and Motion State Characteristics of Mechanisms with Variable Topologies,” Transactions of the Canadian Society for Mechanical Engineering, 30(1), pp. 19-40.
    [13] Kuo, C. H., Yan, H. S., 2007, “On the Mobility and Configuration Singularity of Mechanisms With Variable Topologies,” ASME Journal of Mechanical Design, 129(6), pp. 617-624.
    [14] Yan, H. S., Kuo, C. H., 2009, “Structural Analysis and Configuration Synthesis of Mechanisms with Variable Topologies,” ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, June 22-24, London, UK, pp. 23-31.
    [15] Wohlhart, K., 1996, “ Kinematotropic Linkages,” in Lenarcic, J. and Parenti-Castrlli, V. (eds.), Recent Advances in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, pp. 359-368.
    [16] Galletti, C., Fanghella, P., 2001, “Single-loop Kinematotropic Mechanisms,” Mechanism and Machine Theory, 36(6), pp. 743-761.
    [17] Lee, C. C., Herve, J. M., 2002, “Discontinuous Mobility of One Family of Spatial 6R Mechanisms Through the Group Algebraic Structure of Displacement Set,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, September 29–October 2, Montreal, Quebec, Canada, pp. 645-653.
    [18] Zhang, L., Dai, J. S., 2009, “Reconfiguration of Spatial Metamorphic Mechanisms,” ASME Journal of Mechanisms and Robotics, 1(1), pp. 011012(1-8).
    [19] Slaboch, B. J., Voglewede, P. A., 2011, “Mechanism State Matrices for Planar Reconfigurable Mechanisms,” ASME Journal of Mechanisms and Robotics, 3(1), pp. 011012(1-7).
    [20] Zhang, K. T., Dai, J. S., Fang, Y. F., Zeng, Q., 2011, “String Matrix Based Geometrical and Topological Representation of Mechanisms,” The 13th World Congress in Mechanism and Machine Science, June 19-25, Guanajuato, Mexico.
    [21] Shieh, W. B., Sun, F., Chen, D. Z., 2011, “On the Operation Space and Motion Compatibility of Variable Topology Mechanisms,” ASME Journal of Mechanisms and Robotics, 3(2), pp. 021007(1-7).
    [22] Dai, J. S., Rees Jones, J., 2005, “Matrix Representation of Topological Changes in Metamorphic Mechanisms,” ASME Journal of Mechanical Design, 127(4), pp. 837-840.
    [23] Li, S., Dai, J. S., 2011, “Augmented Adjacency Matrix for Topological Configuration of the Metamorphic Mechanisms,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, 5(3), pp. 187-198.
    [24] Li, D., Zhang, Z., 2011, “Configuration Analysis of Metamorphic Mechanisms Based on Extended Adjacency Matrix Operations,” Chinese Journal of Mechanical Engineering, 24(5), pp. 1-7.
    [25] Zhang, K., Fang, Y., Wei, G., Dai, J. S., 2012, “Structural Representation of Reconfigurable Linkages,” The 2nd ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, July 9-11, Tianjin, China, pp. 127-137.
    [26] 顏鴻森、吳隆庸,2006,機構學,東華書局,臺北。
    [27] Takamiya, K., Ishibashi, H., 1984, “Frame for Folding Bicycle,” United States Patent, No. US4460192.
    [28] Kuo, C. H., Dai, J. S., Yan, H.-S., 2009, “Reconfiguration Principles and Strategies for Reconfigurable Mechanisms,” ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, June 22-24, London, UK, pp. 1-7.
    [29] Zhang, W. X., Ding, X. L., Dai, J. S., 2011, “Morphological Synthesis of Metamorphic Mechanisms Based on Constraint Variation,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(12), pp. 2997-3010.
    [30] Onions, J. H., 1940, “Shock Assorber for Aircraft,” United States Patent, No. 2186266.
    [31] Yu, M. J., 2011, “Dynamic Analysis and Optimal Dimensional Synthesis of Mechanisms with Variable Topologies,” Ph.D. Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [32] 林育申,2010,按鍵鎖結構改良,中華民國專利,專利編號M392225。
    [33] Harary, F., 1969, Graph Theory, Addison–Wesley, Reading, MA.
    [34] Tsai, L. W., 2001, Mechanism Design: Enumeration of Kinematic Structures According to Function, CRC press LLC, Boca Raton, Florida.
    [35] Lan, Z. H., Du, R., 2008, “Representation of Topological Changes in Metamorphic Mechanisms With Matrices of the Same Dimension,”ASME Journal of Mechanical Design, 130(7), pp. 074501(1-4).
    [36] Chu, C. C., 2004, “Conceptual Mechanism Design by Fundamental Entities,” Ph.D. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [37] Zeng, Q., Fang, Y., 2009, “Structural Synthesis of Serial-Parallel Hybrid Mechanisms via Group Theory and Representation of Logical Matrix,” IEEE International Conference on Information and Automation, June 22-24, Zhuhai, Macau, pp. 1392-1397.
    [38] Ambekar, A. G., Agrawal, V. P., 1987, “Canonical Numbering of Kinematic Chains and Isomorphism Problem: Min Code,” Mechanism and Machine Theory, 22(5), pp. 453-461.
    [39] Mruthyunjaya, T. S., Balasubramanian, H. R., 1987, “In Quest of a Reliable and Efficient Computational Test for Detection of Isomorphism in Kinematic Chains,” Mechanism and Machine Theory, 22(2), pp. 131-139.
    [40] Cubillo, J. P., Wan, J., 2005, “Comments on Mechanism Kinematic Chain Isomorphism Identification Using Adjacent Matrices,” Mechanism and Machine Theory, 40(2), pp. 131-139.
    [41] Mruthyunjaya, T. S., 2003, “Kinematic Structure of Mechanisms Revisited,” Mechanism and Machine Theory, 38(4), pp. 279-320.

    QR CODE