簡易檢索 / 詳目顯示

研究生: 陳學逸
Shiue-Yi Chen
論文名稱: 平面可變拓樸機構構造分析之計算策略
A Computational Strategy for the Structural Analysis of Planar Variable Topology Mechanisms
指導教授: 郭進星
Chin-Hsing Kuo
口試委員: 鄧昭瑞
Geo-Ry Tang
史建中
Chien-Jong Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: 可變拓樸機構、構造分解、維度轉換、拓樸同形
外文關鍵詞: structural decomposition, dimension transformation, topological homomorphism
相關次數: 點閱:192下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文對於平面可變拓樸機構之構造分析進行研究,提出一數學運算方法,以系統化進行平面可變拓樸機構之構造分解、拓樸矩陣維度轉換以及拓樸構造相似度判認。研究首先探討機構拓樸構造變化之原因,對可變接頭進行探討與分類。接著回顧現有可變拓樸機構構造分解方法,並提出一種新型構造分解方法,改善現有方法無法處理可動接頭轉換可動接頭之特殊情形,以及機構接頭運動方向無法參照統一坐標系之不便。然後,發展一套拓樸矩陣維度轉換法則,以協助進行具不同桿件數目之可變拓樸機構構造相似度判認。最後,提出可變拓樸機構之拓樸同形判認方法,藉由數學運算以量化表示兩可變拓樸機構之構造相似度。本研究並整合上述步驟,建構一系統化矩陣代數計算流程,可依序完成構造分解、矩陣維度轉換與拓樸同形判認之運算,文中亦提供數個分析範例說明此流程。本研究成果將有助於發展平面與空間可變拓樸機構自動化構造分析與合成。


    This thesis is devoted to the structural analysis of planar variable topology mechanisms (VTMs), trying to develop a systematic computational algorithm for the structural decomposition, dimensional transformation of topological matrix and topological homomorphism identification of planar VTMs. First, the properties of variable topologies of mechanisms are investigated, from which the variable kinematic joints are analyzed and classified. Then, a new structural decomposition method is proposed for dealing with the cases where the mechanism contains the topology changes between mobile joints and for improving the drawback of multiple reference systems used by the existing methods. Next, the dimensional transformation of the topology matrices is presented in order to help the homomorphism identification between two VTMs that have different numbers of effective links. Finally, a mathematic approach for the topological homomorphism identification is proposed for recognizing the topological structural similarity between two VTMs. In conclusion, this work can be unified as a systematic matrix algebraic procedure for the purpose of computational consideration of the structural decomposition, dimensional transformation of topology matrices, and homomorphism identification. Several examples are provided for illustrating the proposed procedure. It is anticipated that the outcome of this work is helpful for the automated structural analysis and synthesis of planar and spatial VTMs.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 可變拓樸機構簡介 1 1.2 研究動機 3 1.3 文獻回顧 5 1.3.1 構造表示 5 1.3.2 構造分解 7 1.3.3 同構判認 10 1.4 研究目的 11 1.5 論文架構 12 第二章 可變拓樸機構概要 14 2.1 可變接頭 14 2.1.1 潛在限制條件 16 2.1.2 可變接頭表示法 19 2.2 構造分解 20 2.3 「構造同構」與「拓樸同形」 24 第三章 新型構造分解方法 32 3.1 現有構造分解方法回顧 32 3.2 新型構造分解方法簡介 35 3.3 來源機構矩陣 37 3.4 修正限制矩陣 38 3.5 子限制矩陣 42 3.6 數碼化子限制矩陣 44 3.7 數碼化子機構拓樸矩陣 48 3.8 子機構拓樸矩陣 51 3.9 機構簡圖 53 3.10 可行性判認 56 3.11 小結 57 第四章 拓樸矩陣之維度轉換 59 4.1 前言 59 4.2 拓樸矩陣維度轉換方法簡介 60 4.3 數碼化機構拓樸矩陣 63 4.4 矩陣元素檢查 63 4.5 矩陣維度轉換 64 4.6 小結 67 第五章 可程式化拓樸同形判認 68 5.1 構形同構判認方法 68 5.2 可變拓樸機構構造分析流程 72 5.3 分析範例 74 5.3.1 機構具相同桿件數且可動接頭轉固定接頭 74 5.3.2 機構具相同桿件數且可動接頭轉可動接頭 85 5.3.3 機構具不同桿件數且可動接頭轉可動接頭 92 5.4 小結 97 第六章 結論與未來展望 98 6.1 結論 98 6.2 未來展望 100 參考文獻 103

    [1] Yan, H. S, Kuo, C. H., 2006, “Topological Representations and Characteristics of Variable Kinematic Joints,” ASME Journal of Mechanical Design, 128(2), pp. 384-391.
    [2] Liu, N. T. , 2001, Configuration Synthesis of Mechanisms with Variable Chains, Ph.D. Thesis, Department of Mechanical Engineering, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [3] Kuo, C. H., Chang, L. Y., 2014, “Structure Decomposition and Homomorphism Identification of Planar Variable Topology Mechanisms,” ASME Journal of Mechanisms and Robotics, 6(2), p. 021002.
    [4] Li, S. J., Wang, H. G., Dai, J. S., Li, X. P., Ren, Z. H., Xiu, S. C., 2013, “Topological Representation and Operation of Motion Space Exchange Reconfiguration of Metamorphic Mechanisms,” Proceedings of the 6th International Workshop on Computational Kinematics, Thomas, F. , Gracia, A. P. , Eds., Barcelona, Spain, May 12-15, Springer Netherlands, Vol. 15, pp. 31-39.
    [5] Yan, H. S., Kuo, C. H., 2006, “Representations and Identifications of Structural and Motion State Characteristics of Mechanisms with Variable Topologies,” Transactions of the Canadian Society for Mechanical Engineering, 30(1), pp. 19-40.
    [6] Lan, Z. H., Du, R., 2008, “Representation of Topological Changes in Metamorphic Mechanisms With Matrices of the Same Dimension,” ASME Journal of Mechanical Design, 130(7), p. 074501.
    [7] Shieh, W. B., Sun, F., Chen, D. Z., 2011, “On the Operation Space and Motion Compatibility of Variable Topology Mechanisms,” ASME Journal of Mechanisms and Robotics, 3(2), p. 021007.
    [8] Slaboch, B. J., Voglewede, P. A., 2011, “Mechanism State Matrices for Planar Reconfigurable Mechanisms,” ASME Journal of Mechanisms and Robotics, 3(1), p. 011012.
    [9] Korves, B. A., Slaboch, B. J., Voglewede, P. A., 2012, “Mechanism State Matrices for Spatial Reconfigurable Mechanisms,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, USA, August 12-15, Paper No. DETC2012-71361.
    [10] Slaboch, B. J., Voglewede, P. A., 2014, “Analysis and Synthesis of Planar Variable Kinematic Joints,” ASME Journal of Mechanisms and Robotics, 6(4), p. 041012.
    [11] Zhang, W. X., Ding, X. L., 2012, “A Method for Configuration Representation of Metamorphic Mechanisms with Information of Component Variation,” in Dai, J. S., Zoppi, M., Kong, X. W., Eds., Advances in Reconfigurable Mechanisms and Robots I, London, Springer, pp. 13-24.
    [12] Chang, L. Y., Kuo, C. H., 2012, “On the Matrix Representation Methods for Variable Topology Mechanisms,” in Dai, J. S., Zoppi, M., Kong, X. W., Eds., Advances in Reconfigurable Mechanisms and Robots I, London, Springer, pp. 73-81.
    [13] Dai, J. S., Rees Jones, J., 2005, “Matrix Representation of Topological Changes in Metamorphic Mechanisms,” ASME Journal of Mechanical Design, 127(4), pp. 837-840.
    [14] Li, S., Dai, J. S., 2011, “Augmented Adjacency Matrix for Topological Configuration of the Metamorphic Mechanisms,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, 5(3), pp. 187-198.
    [15] Li, D., Zhang, Z., 2011, “Configuration Analysis of Metamorphic Mechanisms Based on Extended Adjacency Matrix Operations,” Chinese Journal of Mechanical Engineering, 24(5), pp. 1-7.
    [16] Zhang, K., Fang, Y., Wei, G., Dai, J. S., 2012, “Structural Representation of Reconfigurable Linkages,” in Dai, J. S., Zoppi, M., Kong, X. W., Eds., Advances in Reconfigurable Mechanisms and Robots I, London, Springer, pp. 127-137.
    [17] Mruthyunjaya, T. S., 2003, “Kinematic Structure of Mechanisms Revisited,” Mechanism and Machine Theory, 38(4), pp. 279-320.
    [18] Kuo, C. H., Su, J. W., 2014, “On the Configurational Isomorphism of a Reconfigurable Cube Mechanism,” The 3rd IFToMM Asian Conference on Mechanism and Machine Science, Tianjin, China, July 9-10.
    [19] 顏鴻森、吳隆庸,2006,機構學,東華書局,台北市。
    [20] Takamiya, K., Ishibashi, H., 1984, Frame for Folding Bicycle, United States Patent No. US4460192.
    [21] Zhang, W. X., Ding, X. L., Dai, J. S., 2011, “Morphological Synthesis of Metamorphic Mechanisms Based on Constraint Variation,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(12), pp. 2997-3010.
    [22] Onions, J. H., 1940, Shock Assorber for Aircraft, United States Patent No. 2186266.
    [23] Liu, N. T., Yan, H. S., 2003, “Joint-Codes Representations for Mechanisms and Chains with Variable Topologies,” Transactions of the Canadian Society for Mechanical Engineers, 27(1&2), pp. 131-143.
    [24] Zhang, L., Dai, J. S., 2009, “Reconfiguration of Spatial Metamorphic Mechanisms,” ASME Journal of Mechanisms and Robotics, 1(1), p. 011012.
    [25] Sclater, N., 2011, Mechanisms and Mechanical Devices Sourcebook, 5th Edition, McGraw-Hill Education, New York.
    [26] Li, S., Dai, J. S., 2012, “Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups,” ASME Journal of Mechanisms and Robotics, 4(3), p. 031004.
    [27] Tsai, L. W., 2001, Mechanisms Design: Enumeration of Kinematic Structures According to Function, CRC Press LLC, Boca Raton, Florida.
    [28] Ambekar, A. G., Agrawal, V. P., 1987, “Canonical Numbering of Kinematic Chains and Isomorphism Problem: Min Code,” Mechanism and Machine Theory, 22(5), pp. 453-461.
    [29] Mruthyunjaya, T. S., Balasubramanian, H. R., 1987, “In Quest of a Reliable and Efficient Computational Test for Detection of Isomorphism in Kinematic Chains,” Mechanism and Machine Theory, 22(2), pp. 131-139.
    [30] Cubillo, J. P., Wan, Jinbao, 2005, “Comments on Mechanism Kinematic Chain Isomorphism Identification Using Adjacent Matrices,” Mechanism and Machine Theory, 40(2), pp. 131-139.
    [31] Chang, L. Y., 2012, Structural Decomposition and Homomorphism Identification of Mechanisms with Variable Topologies, Master Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [32] Uicker, J. J., Raicu, A., 1975, “A Method for the Identification and Recognition of Equivalence of Kinematic Chains,” Mechanism and Machine Theory, 10(5), pp. 375-383.
    [33] Yan, H. S., Hall, A. S., 1981, “Linkage Characteristic Polynomials: Definitions, Coefficients by Inspection,” ASME Journal of Mechanical Design, 103(3), pp. 578-584.
    [34] Yan, H. S., Hall, A. S., 1982, “Linkage Characteristic Polynomials: Assembly Theorems, Uniqueness,” ASME Journal of Mechanical Design, 104(1), pp. 11-20.

    無法下載圖示 全文公開日期 2019/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE