簡易檢索 / 詳目顯示

研究生: 曾子瑜
Tzu-Yu TSENG
論文名稱: 抗重力雙姿態下肢癱瘓病患肌力訓練輔助器之設計與測試評估
Design and Experimental Evaluation of a Gravity-Free Dual-Posture Muscle Training Assistive Device for Lower Limb Paralysis Patients
指導教授: 郭進星
Chin-Hsing Kuo
許維君
Wei-Chun Hsu
口試委員: 曾清秀
Ching-Shiow Tseng
郭重顯
Chung-Hsien Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 134
中文關鍵詞: 復健機器人下肢訓練器肌力訓練器靜力平衡機構可重構機構肌電量測
外文關鍵詞: rehabilitation robot, lower limb training device, muscle training device, statically balanced mechanism, reconfigurable mechanism, EMG measurement
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨床上徒手肌力測試(Manual muscle test, MMT)之肌力介於2至3級的下肢復健療程中,病患可產生自主性動作,但需要物理治療師從旁扶持患者下肢,或是利用訓練輔助裝置帶領患者下肢運動,使患者可以在接受協助下收縮肌肉完成動作以訓練下肢肌力。然而,目前所有適用於該肌力等級的市售訓練輔助器,皆是以馬達驅動搭配控制元件的復健機器人,但由於復健機器人的體積、重量與售價往往較其他訓練器來得高,因此該肌力等級的復健器材通常只有醫院有能力購買,患者較無法自行添購於家中使用;另一方面,因為是由馬達帶動患者肢體運動,此復健方式將減少病患自行出力的機會,也因此使用無回饋系統之復健機器人的復健,不一定能有效率地協助病患進行自我訓練。
      本研究提出一種新型下肢癱瘓肌力訓練器機構,該機構不需任何驅動馬達帶動,且具有「抗重力」與「雙姿態」訓練等兩大特點,特別適用於肌力等級2至3之患者。首先,本設計透過靜平衡機構(Statically balanced mechanism)設計方法,機構可以不需任何驅動馬達,便於各個構形皆能抵抗下肢重量(即「抗重力」),不僅可模擬物理治療師之扶持功能,亦可提供患者自我訓練之機會;而經由變更穿戴綁定位置,本設計亦可達到變阻力之訓練效果,協助不同訓練等級。再者,本設計運用可重構機構(Reconfigurable mechanism)特性,機構可分別切換成兩種不同的操作構形分別引導患者進行髖與膝之屈曲/伸直訓練(容許「人體動作雙向之連續性),藉此幫助無法自主控制肌肉的病患,有效率地訓練特定肌群。本研究並進行該新型機構的位置分析,藉此探討訓練器是否符合復健動作需求,以及利用電腦輔助機構運動模擬軟體,驗證本設計之抗重力與可調輔助力之有效性。最後,製作本設計之原型機,並進行人體穿戴測試,使用肌電設備EMG (Electromyography)量測受試者下肢執行矢狀面肌電訊號。實驗結果顯示,穿戴者在使用本輔助器時之肌力電壓比未使用輔助器時之電壓明顯較低,證明本設計的確可幫助使用者以較低的肌力(即無腿重下之肌力)進行髖關節與膝關節之屈曲/伸直等兩種訓練動作。


    During the rehabilitation program for patients with muscle strength classified from level 2 to 3 tested by the manual muscle test (MMT), patients are able to perform voluntary contraction with minimal to moderate assistance provided by physical therapists or rehabilitation devices which create a gravity-free condition aimed to facilitate full-ranged exercise. However, by overviewing the current commercial rehabilitation devices for patients with MMT level 2 to 3, all the devices are actuated by electric motors with programming control, i.e., in a form of rehabilitation robots. Therefore, the rehabilitation devices for patients with MMT level 2 to 3 are only available with a bulky body and heavy weight as compared to those training tools for patients with higher MMT levels. In addition, the prices of these robots are much more costly than the other types of rehabilitation devices. So, such robotic devices are in general found in hospitals only; the patients are not affordable for their home use due to the limited space and budget. On the other hand, since the patient’s limbs are passively guided by the robot, the patient would make less muscular effort and the training effect may be reduced. So the rehabilitation via robotic assisted devices will be less efficient than that without robotic assistance.
    This thesis is devoted to designing a new electric-actuation-free muscle training assistive device for patients suffering from neuromuscular disorders with MMT level 2 to 3. The proposed device has two major features. First, based on the design theory of statically balanced mechanisms, the device can balance the weights of the limb segments in the lower extremities in any working configurations by using common springs only (and no actuator motor is attached). Hence the patient can strengthen his/her limb muscles by him/herself, without the help from physical therapist. The installation positions of the springs can be further changed to produce a changeable resistance force for other purpose of rehabilitation. Second, the device employs the concept of reconfigurable mechanisms, leading to two working configurations that can respectively help the training of hip and knee flexion/extension. This research also carries out the position analysis of the proposed mechanism for examining the feasibility of the mechanism motion for the rehabilitation needs. It further uses motion simulation software to validate the effectiveness of the antigravity and the changeable resistance force of the proposed design. Finally, a prototype is built up and a series of electromyography(EMG) experiments are performed. The results show that the measured electrical currents during movements of the actuated muscles are obviously lower when using the device than that without using the device. It thus proves that the proposed design can effectively create a gravity-free condition for the patients to strengthen the muscles at hip and knee during flexion/extension, which is very useful for patients who suffer from neuromuscular disorders with MMT level 2 to 3.

    摘要 I ABSTRACT III 致謝 V 目錄 VII 表目錄 XII 圖目錄 XIII 符號表 XIX 第一章 緒論 1 1.1. 研究動機 3 1.2. 文獻回顧 7 1.2.1. 坐臥式下肢肌力訓練器 7 1.2.2. 靜力平衡機構 12 1.2.3. 可重構機構 13 1.3. 研究目的 14 1.4. 論文架構 15 第二章 下肢復健肌力訓練輔助器簡介 18 2.1. 下肢復健醫學介紹 18 2.1.1. 髖屈曲/伸直肌 21 2.1.2. 膝屈曲/伸直肌 21 2.1.3. 髖外展/內收肌 23 2.2. 站立式下肢復健器 24 2.2.1. 被動式站立下肢復健器 24 2.2.2. 主動式站立下肢復健器 26 2.3. 坐臥式下肢復健器 28 2.3.1. 被動式-坐臥式下肢復健器 28 2.3.2. 主動式-坐臥式下肢復健器 32 2.3.3. 主被動式-坐臥式下肢復健器 37 2.4. 討論 39 2.5. 小結 40 第三章 雙姿態下肢復健肌力訓練器材創新機構設計 42 3.1. 下肢復健肌力訓練器運動設計目標 42 3.2. 可重構下肢肌力訓練機構之構想設計 43 3.3. 小結 46 第四章 全域靜力平衡設計 47 4.1. 下肢輔助力需求簡介 47 4.2. 靜力平衡方式分類 48 4.3. 基本假設 48 4.4. 靜力平衡設計 51 4.4.1. 彈簧連接方式 52 4.4.2. 彈簧設計參數 53 4.4.3. 創新機構之靜力平衡設計 54 4.5. 運動尺寸與彈簧參數設計 63 4.5.1. 狀態一(膝屈曲/伸直動作) 65 4.5.2. 狀態二(髖屈曲/伸直動作) 67 4.6. 零自由長度(ZERO-FREE-LENGTH)彈簧之實現 69 4.6.1. 倒單擺系統 69 4.6.2. 本創新機構 70 4.7. 小結 72 第五章 可調輔助力設計 73 5.1. 可調輔助力設計目標 73 5.2. 可調輔助力之設計概念 73 5.2.1. 膝運動輔助力調整 74 5.2.2. 髖運動輔助力調整 76 5.3. 小結 80 第六章 位置分析 81 6.1. 向量迴路分析 81 6.1.1. 髖訓練狀態機構迴路分析 81 6.1.2. 膝訓練狀態機構迴路分析 84 6.2. 數值驗證與繪圖範例 86 6.2.1. 髖訓練狀態機構 86 6.2.2. 膝訓練狀態機構 88 6.3. 小結 90 第七章 電腦模擬 91 7.1. MD ADAMS 軟體介紹 91 7.2. CAD模型定義 91 7.3. 軟體設定 92 7.4. 靜力平衡模擬驗證 95 7.5. 可調輔助力模擬驗證 99 7.6. 小結 102 第八章 原型機製作與實驗評估 103 8.1. 新型抗重力雙姿態下肢肌力訓練器之CAD圖 103 8.2. 原型機製作 107 8.3. 人體實驗評估 111 8.3.1. EMG實驗量測設備 111 8.3.2. 量測項目與實驗架設 113 8.3.3. 實驗結果與討論 115 8.4. 小結 125 第九章 結論與未來展望 126 9.1. 結論 126 9.2. 未來展望 128

    [1] O'Sullivan, S. B., Schmitz, T. J., 2006, Physical Rehabilitation, 5th ed., F. A. Davis, Philadelphia, PA.
    [2] Clarkson, H. M., 2000, Musculoskeletal Assessment: Joint Range of Motion and Manual Muscle Strength, Lippincott Williams & Wilkins, Philadelphia, PA.
    [3] 輔具資源中心., 2014; Available from: http://repat.sfaa.gov.tw.
    [4] Cunningham, J. J., 2003, “Post Operative Knee Flexer,” US Patent No. US20030171196A1.
    [5] Yates, M., 2012, “Leg Rehabilitation Strap,” US Patent No. US8142336.
    [6] Nolan, G. J., McGinty, B. R., 2013, “Leg Exercise Machine,” US Patent No. US8430800.
    [7] Eschenbach, P. W., 2002, “Recumbent Abdominal Exercise Apparatus,” US Patent No. US6500099.
    [8] Brentham, J. D., 1981, “Dual Cylinder Hip Exercising Device,” US Patent No. 4247098.
    [9] Chen, C. L., 2009, “Waist and Buttocks Exerciser,” US Patent No. US7485078.
    [10] Planke, T., 2008, “Training Apparatus,” US Patent No. US7811202.
    [11] Redcord Co. 2014; Available from: http://www.terapimaster.cz/.
    [12] Hoecht, D., Bohm, F., 2002, “Compact, Multi-Choice Exercise Apparatus,” US Patent No. 6443877.
    [13] Reyes, G., 2010, “Hip Flexor,” US Patent No. 20110098160.
    [14] Arnold, F., 2009, “Ankle/Leg Therapy Device,” US Patent No. 7481751.
    [15] Homma, K., Fukuda, O., Sugawara, J., Nagata, Y., Usuba, M., 2003, “A Wire-Driven Leg Rehabilitation System: Development of a 4-DOF Experimental System,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, 20-24 July, Vol. 2, pp. 908-913.
    [16] Homma, K., Fukuda, O., Nagata, Y., Usuba, M., 2004, “Study of a Wire-Driven Leg Rehabilitation System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, 28 September-2 October, Vol. 2, pp. 1668-1673.
    [17] Homma, K., Fukuda, O., Nagata, Y., 2002, “Study of a Wire-Driven Leg Rehabilitation System,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Sept. 30-October. 4, Vol. 2, pp. 1451-1456.
    [18] Okada, S., Sakaki, T., Hirata, R., Okajima, Y., Uchida, S., Tomita, Y., 2001, “TEM: A Therapeutic Exercise Machine for the Lower Extremities of Spastic Patients,” Advanced Robotics, 14(7), pp. 597-606.
    [19] Moughamir, S., Manamanni, N., Zaytoon, J., Afilal, L., 2001, “Control Law Iplementation for Multi-Iso: A Training Machine for Lower Limbs,” Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, October 25-28, Vol. 2, pp. 1477-1480.
    [20] Bradley, D., Acosta-Marquez, C., Hawley, M., Brownsell, S., Enderby, P., Mawson, S., 2009, “NeXOS – The Design, Development and Evaluation of a Rehabilitation System for the Lower Limbs,” Mechatronics, 19(2), pp. 247-257.
    [21] Hashimoto, Y., Komada, S., Hirai, J., 2009, “Development of a Biofeedback Therapeutic Exercise Supporting Manipulator for Lower Limbs,” IEEE International Conference on Industrial Technology, Mumbai, India, 15-17 December, pp. 352-357.
    [22] 馬仕安,2007,膝和髖關節神經復健用機器人之研究,機械工程學系,國立成功大學,台南市。
    [23] Rajakornkij, M., Prasertsakul, T., Charoensuk, W., 2012, “Designing the LeHab Robot for Passive Exercise in Neurological Patients,” IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Bangkok, Thailand, 27-31 May, pp. 321-326.
    [24] Wang, D., Gao, X., Liu, Y., 2011, “A Robotic Extremities Muscle Rehabilitation System for Quadriplegia,” International Conference on Mechatronics and Automation, Beijing, China, 7-10 August, pp. 1190-1195.
    [25] Deaconescu, T. T., Deaconescu, A. I., Petre, I. G., 2011, “Assistive Rehabilitation Device for the Joints of the Lower Limb,” ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, DC, USA, 28–31 August, Vol. 3, pp. 765-769.
    [26] Rupp, R., Plewa, H., Hofer, E. P., Knestel, M., 2009, “MotionTherapy@Home - A Robotic Device for Automated Locomotion Therapy at Home,” IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23-26 June, pp. 395-400.
    [27] Kaczmarski, M., Granosik, G., 2002, “Exercise Programming and Control System of the Leg Rehabilitation Robot RRH1,” in Kozłowski, K., Ed., Robot Motion and Control, Springer, London, pp. 403-412.
    [28] Akdoğan, E., Adli, M. A., 2011, “The Design and Control of a Therapeutic Exercise Robot for Lower Limb Rehabilitation: Physiotherabot,” Mechatronics, 21(3), pp. 509-522.
    [29] 徐敏翔,2005,下肢復健輔具之研發,製造科技研究所,國立臺北科技大學,台北市。
    [30] 林炳榮、林崇華,1995,“腿部復健器”,中華民國專利,TW00314775。
    [31] 黃啟宗,2006,“下肢復健機”,中華民國專利,TWM288815。
    [32] Jacofsky, D., Lyman, J., 2011, “Passive Motion Machine with Integrated Mechanical DVT Prophylactic Therapy,” US Patent No. US20110077560.
    [33] Zagorski, Joseph, B., Roy, Stephen, C., 1985, “Leg Exercise Device,” US Patent No. 4549534.
    [34] Ou, Y. J., Chung, J. S., Su, M. K., Jian, J. J., 2004, “Continuous Passive Motion Exercise System with Driven Monitoring,” US Patent No. US20040127821.
    [35] Focht, Louise, M., Green, Robert, S., Becker, Richard, A., 1994, “Continuous Passive Motion Device for Full Extension of Leg,” US Patent No. 5280783.
    [36] 陳達仁、吳佳峻、謝文賓、吳宗明,2013,“下肢肌力強化裝置”,中華民國專利,TWI404553。
    [37] Brown, G., DiGuilio, A. O., 1980, “Support Apparatus,” U.S. Patent No. US4208028.
    [38] Banala, S. K., Agrawal, S. K., Fattah, A., Krishnamoorthy, V., Hsu, W.-L., Scholz, J., Rudolph, K., 2006, “Gravity-Balancing Leg Orthosis and Its Performance Evaluation,” IEEE Transactions on Robotics, 22(6), pp. 1228-1239.
    [39] Rahman, T., Sample, W., Seliktar, R., Scavina, M. T., Clark, A. L., Moran, K., Alexander, M. A., 2007, “Design and Testing of a Functional Arm Orthosis in Patients With Neuromuscular Diseases,” IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(2), pp. 244-251.
    [40] Hain, K., 1961, Spring Mechanisms-Point Balancing and Spring Mechanisms-Continuous Balancing, McGraw-Hill, New York.
    [41] Nathan, R. H., 1985, “A Constant Force Generation Mechanism,” ASME Journal of Mechanisms, Transmissions and Automation in Design, 107(4), pp. 508-512.
    [42] Streit, D. A., Gilmore, B. J., 1989, “‘Perfect’ Spring Equilibrators for Rotatable Bodies,” ASME Journal of Mechanisms, Transmissions and Automation in Design, 111(4), pp. 451-458.
    [43] Carricato, M., Gosselin, C., 2009, “A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation,” ASME Journal of Mechanisms and Robotics, 1(3), p. 031005.
    [44] Ebert-Uphoff, I., Gosselin, C. M., Laliberté, T., 2000, “Static Balancing of Spatial Parallel Platform Mechanisms—Revisited,” ASME Journal of Mechanical Design, 122(1), pp. 43-51.
    [45] Rahman, T., Ramanathan, R., Seliktar, R., Harwin, W., 1995, “A Simple Technique to Passively Gravity-Balance Articulated Mechanisms,” ASME Journal of Mechanical Design, 117(4), pp. 655-658.
    [46] Eckenstein, N., Yim, M., 2013, “Modular Advantage and Kinematic Decoupling in Gravity Compensated Robotic Systems,” ASME Journal of Mechanisms and Robotics, 5(4), p. 041013.
    [47] Agrawal, S. K., Fattah, A., 2004, “Gravity-balancing of spatial robotic manipulators,” Mechanism and Machine Theory, 39(12), pp. 1331-1344.
    [48] Herder, J. L., 1998, “Design of Spring Force Compensation Systems,” Mechanism and Machine Theory, 33(1–2), pp. 151-161.
    [49] Kuo, C.-H., Lai, S.-J., 2014, “Design of a Novel Statically Balanced Mechanism for Laparoscope Holders with Decoupled Positioning and Orientating Manipulation,” ASME International Design Engineering Technical Conferences (IDETC 2014), Buffalo, NY, USA, 17-20 August, Paper No. DETC2014-34711.
    [50] Lin, P.-Y., Shieh, W.-B., Chen, D.-Z., 2010, “Design of a Gravity-Balanced General Spatial Serial-Type Manipulator,” ASME Journal of Mechanisms and Robotics, 2(3), p. 031003.
    [51] 陳志鴻,2012,具重力輔助功能之穿戴式下肢矯正器設計,機械與電機工程所,明志科技大學,新北市。
    [52] Agrawal, S. K., Banala, S. K., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J. P., Hsu, W. L., 2007, “Assessment of Motion of a Swing Leg and Gait Rehabilitation with a Gravity Balancing Exoskeleton,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), pp. 410-420.
    [53] Lin, P.-Y., Shieh, W.-B., Chen, D.-Z., 2013, “A Theoretical Study of Weight-Balanced Mechanisms for Design of Spring Assistive Mobile Arm Support (MAS),” Mechanism and Machine Theory, 61, pp. 156-167.
    [54] Kuo, C. H., Dai, J. S., Yan, H. S., 2009, “Reconfiguration Principles and Strategies for Reconfigurable Mechanisms,” ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots., London, UK, June 22-24, pp. 1-7.
    [55] Yan, H.-S., Liu, N.-T., 1999, “Configuration Synthesis of One Step Push-Button Stopper Lock With Variable Passwords,” Proceedings of the 10th World Congress on the Theory of Machines and Mechanisms, Oulu, Finland, June 20-24.
    [56] Kuo, C.-H., Su, C.-W., 2014, “On the Configurational Isomorphism of a Reconfigurable Cube Mechanism,” The 3rd IFToMM Asian Conference on Mechanism and Machine Science, Tianjin, China, July 9-10.
    [57] Li, S., Dai, J. S., 2012, “Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups,” ASME Journal of Mechanisms and Robotics, 4(3), p. 031004.
    [58] Kim, C. M., Eng, J. J., Whittaker, M. W., 2004, “Level Walking and Ambulatory Capacity in Persons with Incomplete Spinal Cord Injury: Relationship with Muscle Strength,” Spinal Cord, 42(3), pp. 156-62.
    [59] Netter, F. H., 2010, Atlas of Human Anatomy, Elsevier Health Sciences, Singapore.
    [60] Hislop, H. J., Montgomery, J., 2007, Daniels and Worthingham's Muscle Testing: Techniques of Manual Examination, Elsevier Science Health Science Division, Philadelphia, PA.
    [61] Hokoma Co., 2014; Available from: http://www.hocoma.com/.
    [62] Freivogel, S., Mehrholz, J., Husak-Sotomayor, T., Schmalohr, D., 2008, “Gait Training with the Newly Developed 'LokoHelp'-System is Feasible for Non-ambulatory Patients After Stroke, Spinal Cord and Brain Injury. A Feasibility Study,” Brain Injury, 22(7-8), pp. 625-632.
    [63] Schmitt, C., Metrailler, P., 2004, “The Motion Maker™ : a Rehabilitation System Combining an Orthosis with Closed-Loop Electrical Muscle Stimulation,” The 8th Vienna International Workshop on Functional Electrical Stimulation, Vienna, Austria, 10-13 September, pp. 117-120.
    [64] Herder, J. L., 2001, Energy-free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms, Department of Mechanical Engineering, Delft University of Technology.
    [65] Naval Biodynamics Laboratory, 1998, Anthropometry and Mass Distribution for Human Analogues, Volume I: Military Male Aviators, Naval Medical Research and Development Command Bethesda,New Orleans, LA.
    [66] 春名股份有限公司, 2014; Available from: http://www.springming.com.
    [67] Delsys Inc., 2014; Available from: http://www.delsys.com/.

    無法下載圖示 全文公開日期 2019/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE