研究生: |
劉啟恩 Chi-En Liu |
---|---|
論文名稱: |
複合動力系統液壓驅動離合器之模型預測控制 Model Predictive Control of Hydraulic Clutches in Hybrid Electric Power Systems |
指導教授: |
姜嘉瑞
Chia-Jui Chiang |
口試委員: |
姜嘉瑞
Chia-Jui Chiang 陳亮光 Liang-kuang Chen 楊景龍 Jing-Long Yang 顧詠元 Yung-Yuan Ku |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 液壓驅動離合器 、複合動力系統 、模式切換 、模型預測控制 |
外文關鍵詞: | hydraulic clutch, hybrid electric system, mode switching, model predictive control |
相關次數: | 點閱:446 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
溫室效應、全球暖化已成為近年來最火熱的議題,藉著複合動力的方式驅動車輛,不但有助於溫室效應之改善,亦可提升車輛之動力。在混合動力車輛中,離合器正是達成模式切換最重要的原件。藉著離合器的接合或分離,便可以達成模式切換的功能。不過離合器要順利接合有許多條件需要考慮,像是離合器兩端扭力及轉速差、推動活塞推力、離合器片接合時間。若接合瞬間離合器兩端轉速相差太大,可能會導致離合器片磨損、需要較大的能量損耗或是使乘坐者察覺車輛的頓挫感;反之推動活塞的力道太小也可能使接合時間拉長,進而延長模式切換所需時間。本論文使用液壓離合器物理模型,並以模型為基礎來進行最佳化控制器設計。控制目標分為三個模式:第一模式為活塞被推動但尚未接合前,能使活塞推動速度最大化,縮短模式切換所需時間;第二模式為離合器片滑動狀態,並維持整體接合時間在可接受的範圍內;第三模式為離合器片接合後,提供較高程度的正向力,以避免離合器片打滑。由於液壓離合器模型存在多個控制目標及輸入限制條件,故本論文選擇使用模型預測控制(Model Predictive Control)來達成模式切換最佳化控制的方法。
The greenhouse effect and global warming have become the hottest issues in recent years. Driving the vehicle by hybrid power, it will not only contribute to the improvement of the greenhouse effect, but also increase the power of the vehicle. In hybrid vehicles, the clutch is the most important element for mode switching. The mode switching function can be achieved by the engagement or disengagement of the clutch. However, there are many conditions to be considered when the clutch is to be smoothly engaged. Such as the torque and rotation speed difference at both ends of the clutch、the thrust apply on the piston、clutch plate engagement time. If the speed difference between the two ends of the clutch is too large, it may cause the clutch plate to wear out, require more energy loss or make the passenger feel the frustration of the vehicle. Conversely the thrust that pushing the clutch too small may also make the engagement time too long, which in turn extends the time required for mode switching. This paper uses the physical model of hydraulic clutch, and design optimal controller based on the model. The control target is divided into three modes: the first mode is to maximize the piston moving speed and shorten the time required for mode switching before the piston is pushed but not yet engaged; the second mode is the slip state of the clutch plate and maintains the overall engagement time within an acceptable range; the third mode provides a higher normal force after the clutch plates are engaged and to avoid slippage of the clutch plates. Due to the hydraulic clutch model has multiple control targets and input constraints, this paper chooses to use Model Predictive Control to achieve mode switching optimization control.
[1] 美國國家航空暨太空總署. 全球暖化趨勢圖. 取自: https://data.giss.nasa.gov/gistemp/maps/index_v3.html.
[2] L. Guzzella and C. H. Onder. Introduction to modeling and control of internal combustion engine systems. Springer, Berlin; New York, NY, 2004.
[3] Kamil Çağatay Bayindir, Mehmet Ali Gözüküçük, and Ahmet Teke. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units. Energy conversion and Management, 52(2):1305–1313, 2011.
[4] Abhishek Dutta, Clara M Ionescu, Bart Wyns, Robin De Keyser, Julian Stoev, Gregory Pinte, and Wim Symens. Switched nonlinear predictive control with adaptive references for engagement of wet clutches. IFAC Proceedings Volumes, 45(17):460–465, 2012.
[5] T. D. Burton. Introduction to dynamic systems analysis. McGraw-Hill, New York,1994.
[6] W. Lhomme, R. Trigui, P. Delarue, B. Jeanneret, A. Bouscayrol, and F. Badin. Switched causal modeling of transmission with clutch in hybrid electric vehicles. In 2006 IEEE Vehicle Power and Propulsion Conference, pages 1–6.
[7] E. Camacho and C. Bordons. Model Predictive Control. Springer, 2003.
[8] Shoaib Iqbal, Farid Al-Bender, Agusmian P Ompusunggu, Bert Pluymers, and Wim Desmet. Modeling and analysis of wet friction clutch engagement dynamics. Mechanical Systems and Signal Processing, 60:420–436, 2015.
[9] Josko Deur, Josko Petric, Jahan Asgari, and Davor Hrovat. Modeling of wet clutch engagement including a thorough experimental validation. SAE transactions, pages 1013–1028, 2005.
[10] Agusmian Partogi Ompusunggu, Paul Sas, and Hendrik Van Brussel. Modeling and simulation of the engagement dynamics of a wet friction clutch system subjected to degradation: An application to condition monitoring and prognostics. Mechatronics,23(6):700–712, 2013.
[11] H Gao, GC Barber, and M Shillor. Numerical simulation of engagement of a wet clutch with skewed surface roughness. Journal of Tribology, 124(2):305–312, 2002.
[12] Tien-Chen Jen and Daniel James Nemecek. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement. International journal of heat and mass transfer,51(7-8):1757–1769, 2008.
[13] Li Wenbin, Huang Jianfeng, Fei Jie, Cao Liyun, and Yao Chunyan. Simulation and application of temperature field of carbon fabric wet clutch during engagement based on finite element analysis. International Communications in Heat and Mass Transfer,71:180–187, 2016.
[14] M Ingram, T Reddyhoff, and HA Spikes. Thermal behaviour of a slipping wet clutch contact. Tribology Letters, 41(1):23–32, 2011.
[15] Mongi Mansouri, Mikael Holgerson, Michael-M Khonsari, and W Aung. Thermal and dynamic characterization of wet clutch engagement with provision for drive torque.Journal of tribology, 123(2):313–323, 2001.
[16] Xiang Xiong, Jie Chen, Pingping Yao, Shipeng Li, and Baiyun Huang. Friction and wear behaviors and mechanisms of fe and sio2 in cu-based p/m friction materials. Wear,262(9-10):1182–1186, 2007.
[17] Pär Nyman, Rikard Mäki, Richard Olsson, and Bager Ganemi. Influence of surface topography on friction characteristics in wet clutch applications. Wear, 261(1):46–52,2006.
[18] Ping-Ping Yao, Hong-Chao Sheng, Xiang Xiong, and Bai-Yun Huang. Worn surface characteristics of cu-based powder metallurgy bake materials for aircraft. Transactions of Nonferrous Metals Society of China, 17(1):99–103, 2007.
[19] Shengdun Zhao, Ji Wang, Jun Wang, and Yupeng He. Expansion-chamber muffler for impulse noise of pneumatic frictional clutch and brake in mechanical presses. Applied Acoustics, 67(6):580–594, 2006.
[20] A. E. Balau and C. Lazar. State-space model of an electro-hydraulic actuated wet clutch.IFAC Proceedings Volumes, 43(7):506–511, 2010.
[21] Bingzhao Gao, Hong Chen, Qifang Liu, and Hongqing Chu. Position control of electric clutch actuator using a triple-step nonlinear method. IEEE Transactions on Industrial Electronics, 61(12):6995–7003, 2014.
[22] Xingyong Song and Zongxuan Sun. Pressure-based clutch control for automotive transmissions using a sliding-mode controller. IEEE/ASME Transactions on mechatronics,17(3):534–546, 2011.
[23] Shihua Li, Chienshin Wu, and Zongxuan Sun. Design and implementation of clutch control for automotive transmissions using terminal-sliding-mode control and uncertainty observer. IEEE Transactions on Vehicular Technology, 65(4):1890–1898, 2015.
[24] Alexandra Grancharova and Tor A Johansen. Design and comparison of explicit model predictive controllers for an electropneumatic clutch actuator using on/off valves. IEEE/ASME transactions on mechatronics, 16(4):665–673, 2010.
[25] Jacques Richalet, A Rault, JL Testud, and J Papon. Model predictive heuristic control.Automatica (Journal of IFAC), 14(5):413–428, 1978.
[26] Ramine Rouhani and Raman K. Mehra. Model algorithmic control (mac); basic theoretical properties. Automatica, 18(4):401–414, 1982.
[27] Charles R Cutler and Brian L Ramaker. Dynamic matrix control- a computer control algorithm.In joint automatic control conference, page 72.
[28] D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized predictive control—part i. the basic algorithm. Automatica, 23(2):137–148, 1987.
[29] D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized predictive control—part ii extensions and interpretations. Automatica, 23(2):149–160, 1987.
[30] Wook Hyun Kwon and Dae Gyu Byun. Receding horizon tracking control as a predictive control and its stability properties. International Journal of Control, 50(5):1807–1824, 1989.
[31] Katsuhiko Ogata. System dynamics. Fourth edition. Upper Saddle River, NJ : Pearson/Prentice Hall, [2004] ©2004, 2004.
[32] Per Nobrant. Driveline modelling using mathmodelica. Universität von Linköping,Institute of Techology, Linköping (Schweden), 2001.
[33] Liuping Wang. Model Predictive Control System Design and Implementation Using MATLAB. Springer Publishing Company, Incorporated, 2009.