簡易檢索 / 詳目顯示

研究生: 許富昱
FU-YU HSU
論文名稱: 基於模型預測控制之新型鋰離子電池充電演算法
A novel charging algorithm for lithium-ion batteries based on model predictive control
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 模型預測控制類神經網路鋰離子電池電池溫升
外文關鍵詞: Model Predictive Control, Artificial Neural Network, Li-ion battery, Battery Temperature
相關次數: 點閱:331下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池已被大量使用在消費性產品的能量儲存上,例如:手機、航空、電動車以及再生能源之儲存裝置,而充電方法對鋰離子電池的壽命有很大之影響,因此設計出高品質的電池充電器是必須的,一個好的充電器需具備高充電效率、充電時間短且能延長電池循環壽命。
    本文提出一種基於模型預測控制之電池充電法,此法主要之目標為縮短充電時間同時降低電池在充電過程中的溫升,本文使用庫侖積分來計算未來之剩餘容量,並透過訓練過後的類神經網路來預測未來之溫升,相較於定電流定電壓充電法相比,本文所提方法之充電時間可快2.8%,平均溫升最多可降低14.45%。

    關鍵字:模型預測控制、類神經網路、鋰離子電池、電池溫升


    Lithium-ion (Li-ion) batteries play a substantial role in energy storage solutions for modern-day technologies such as hand-held consumer electronics, aerospace, electric vehicles and energy backup for renewable energy systems. For Li-ion batteries, designing a high-quality battery charger is essential since charging method has significant influences on the performance and lifetime of Li-ion batteries. The objectives of a high-quality charger include higher charging efficiency, shorter charging time and prolonged cycle life.
    In this thesis, a model predictive control based charging algorithm is proposed, the aim of the presented technique is to simultaneously reduce the charging time and the temperature rise during charging. In this study, coulomb counting method is utilized to calculate the future state-of-charge (SOC) and an artificial neural network (ANN) trained by experimental data is also applied to predict the future temperature rise. Comparing with widely employed constant current-constant voltage (CC-CV) charging method, the proposed charging technique can improve the charging time and the average temperature rise by 2.8 % and 14.45 %, respectively.

    Keyword: Model Predictive Control, Artificial Neural Network, Li-ion battery, Battery Temperature

    摘要I AbstractII 誌謝III 目錄IV 圖目錄VII 表目錄X 第一章 緒論1 1.1 研究背景1 1.2 文獻回顧1 1.3 論文大綱3 第二章 二次電池與二次電池充電技術介紹5 2.1電池專有相關名詞介紹5 2.2二次電池介紹7 2.2.1 鉛酸電池7 2.2.2 鎳鎘電池7 2.2.3 鎳氫電池7 2.2.4 鋰離子電池8 2.2.5 二次電池特性比較8 2.3本文所選用電池介紹9 2.4 二次電池充電技術介紹10 2.4.1定電壓充電法11 2.4.2 定電流充電法12 2.4.3 定電流定電壓充電法12 2.4.4定電流-定電壓衍生型充電法13 2.4.5 多階段電流充電法15 2.4.6 脈衝充電法17 第三章 類神經網路與模型預測控制介紹20 3.1 類神經網路基本概念20 3.2 類神經網路的特性23 3.2.1 類神經網路模式分類23 3.2.2 倒傳遞類神經網路說明24 3.3 模型預測控制29 3.3.1 模型預測控制介紹29 3.3.2 廣義預測控制介紹30 3.3.3 廣義預測控制模型31 3.4 評分函數33 第四章 類神經網路結合模型預測控制之韌體架構 35 4.1 類神經網路實驗環境 35 4.1.1 類神經網路訓練資料 35 4.1.2 電池溫升之倒傳遞類神經網路設計36 4.1.3 以倒傳遞類神經網路模型預估電池溫升38 4.2 人機介面介紹44 4.2.1 LabVIEW簡介44 4.2.2 人機介面程式45 第五章 實驗結果和數據49 第六章 結論與未來展望55 6.1 結論55 6.2 未來展望55 參考文獻56

    [1]羅一峰,「運用田口方法之鋰電池最佳化快速充電波形搜尋」,台灣科技大學電機工程博士論文,民國九十九年八月。
    [2]柯俊偉,「智慧型電池模組之可程控充電機設計」,台灣科技大學電機工程碩士論文,民國一零一年七月。
    [3]李易玹,「鋰離子電池新型充電方法之研究」,台灣科技大學電機工程碩士論文,民國一零二年七月。
    [4]陳蓉賢,「以模糊控制為基礎之鋰離子電池模組充電技術開發」,台灣科技大學電機工程碩士論文,民國一零一年七月。
    [5]劉俊良,「以模糊田口為基礎之新型電池充電機」,台灣科技大學電機工程博士論文,民國一零三年七月。
    [6]陳冠炷,「以剩餘容量與模糊溫度控制為基礎之鋰離子電池充電機設計與實現」,台灣科技大學電機工程碩士論文,民國一零三年七月。
    [7]連于瑄,「具CAN Bus通訊之鋰離子電池容量估測系統」,台灣科技大學電機工程碩士論文,民國一零五年七月。
    [8]K. M. Tsang, W. L. Chan, “Current sensorless quick charger for lithiumion batteries,” Energy Conversion and Management 52, 2011, pp.1593-1595.
    [9]P. H. L. Notten, J. H. G. Op het Veld, J. R. G. van Beek, “Boostcharging Li-ion batteries: A challenging new charging concept”, Journal of power Source, vol. 145, no. 1, pp. 89-94, Feb 2005.
    [10]G.C. Hsieh, L.R. Chen, and K. S. Huang, “ Fuzzy controlled Lithium-Ion Battery Charge System with Active State of Charge Controller,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, June 2001.
    [11]L. R. Chen, R. C. Hsu, and C. S. Liu, “A Design of A Grey-Predicted Lithium-Ion Battery Charge System,” IEEE Transactions on Industrial Electronics, vol. 51, no. 6, June 2004.
    [12]L. R. Chen, “PLL-Based Battery Charge Circuit Topoloty,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, June 2001.
    [13]L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, ”Current pumped battery charger,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2482- 2488, Jun 2008.
    [14]L. R. Dung, and J. H. Yen, ” ILP-Based Algorithm for Lithium-Ion Battery Charging Profile,” IEEE International Symposium on Industrial Electronics (ISIE), pp. 2286 – 2291 , July 2010.
    [15]J.W. Huang, Y.H. Liu, S.C. Wang, Z.Z. Yang, “Fuzzy-Control-Based Five-Step Lithium-Ion Battery Charger,” IEEE International Conference on Power Electronics and Drive Systems (PEDS), 2009.
    [16]Y. H. Liu, C. H. Hsieh, and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using consecutive orthogonal arrays,” IEEE Trans. Ind. Electron., vol. 26, no. 2, pp. 654–661, 2011.
    [17]Y. H. Liu and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using Taguchi approach,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3963–3971, Dec. 2010.
    [18]Y. H. Liu, J. H. Teng, and Y. C. Lin, “Search for an optimal rapid charging pattern for Li-ion batteries using ant colony system algorithm,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1328–1336, Oct. 2005.
    [19]L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique”, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp.398-405, Feb 2007.
    [20]L. R. Chen, “A design of Duty-Varied Voltage Pulse Charger for Improving Lithium-Ion Battery-Charging Response”, IEEE Trans. Ind. Electron., vol. 56, no. 2, pp.480-487, Feb. 2009.
    [21]B. K. Purushothama, P. W. Morrison, Jr., and U. Landau, “Reducing mass-transport limitations by application of special pulsed current modes”, Journal of The Electrochemical Society, vol. 152, no. 4, pp. J33-J39, 2005.
    [22]B. K. Purushothama and U. Landau, “Rapid charging of Lithium-ion batteries using pulsed current”, Journal of The Electrochemical Society, vol. 153, no. 3, pp. A533-A542, 2006.
    [23]孫清華,「可充電電池技術大全」,全華科技圖書股份有限公司,2003年9月。
    [24]屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,工業出版社冶金,2006年5月。
    [25]陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,民國九十三年第六十二卷第四期。
    [26]Panasonic Inc., “Lithium Ion Battery-NCR18650B,” Specification
    Report, ver. 13.11 R1. (2012)
    [27]I. Chotia, and S. Chowdhury, “Battery Storage and Hybrid Battery Supercapacitor Storage Systems : A Comparative Critical Review,” IEEE Smart Grid Technologies, pp. 1-6. (2015)
    [28]I. Patil, J. W. Choi, and S. J. Yoon, “Review of Issue and Challenges
    Facing Rechargeable Nanostructured Lithium Batteries,” IEEE
    Nanotechnology Materials and Devices Conference, vol. 1, pp. 196-197. (2006)
    [29]P.E. De Jongh, P.H.L. Notten, “Effect of Current Pulses on Lithium Intercalation Batteries,” Solid State Ionics 148, 2002, pp. 259-268.
    [30]J. Li, E. Murphy, J. Winnick, P. A. Kohl, “The Effects of Pulse Charging on Cycling Characteristics of Commercial Lithium-Ion Batteries,” Journal of Power Sources, 102 (2001), pp. 302-309.
    [31]李孜賾,「以模糊控制為基礎之五階段鋰電池充電機」,台灣科
    技大學電機工程研究所論文,民國九十八年六月。
    [32]H. J. Chiu, L. W. Lin, P. L. Pan, and M. H. Tseng, “A novel rapid
    charger for lead-acid batteries with energy recovery,” IEEE Trans.
    on Power Electronics, vol. 21, no. 3, pp. 640–647, May 2006.
    [33]J. B. Wang, and C. Y. Chuang, “Design considerations of microprocessor-controlled multiphase battery charger with fast-charging strategy,” IET on Electric Power Applications, vol. 1, no. 2, pp. 143–152, Mar. 2007.
    [34]C. H. Lin, C. L. Chen, Y. H. Lee, S. J. Wang, C. Y. Hsieh, H. W. Huang and K. H. Chen, “Fast charging technique for Li-ion battery charger,” Proc. of IEEE Electronics, Circuits and Systems International Conference, pp. 618 – 621, Sep. 2008.
    [35]V. Svoboda, H. Doering, and J. Garche, “The influence of fast charging on the performance of VRLA batteries,” J. Power Sources, vol. 144, no. 1, pp. 244–254, Jun. 2005.
    [36]M. James, J. Grummett, and M. Rowan et al, “Application of pulse charging techniques to submarine lead-acid batteries,” J. Power Sources, vol. 162, no. 2, pp. 878–883, Nov. 2006.
    [37]W. Shen, T. T. Vo, and A. Kapoor, “Charging Algorithms of Lithium-Ion Batteries: an Overview,” 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1567 – 1572, July 2012.
    [38]黃嘉偉,「適用於快速變動環境之太陽能最大功率追蹤技術研究」,台灣科技大學電機工程博士論文,民國一零二年七月。
    [39]陳重諺,「以交流阻抗為基礎之鋰離子電池殘餘容量估測技術研究」,台灣科技大學電機工程碩士論文,民國一零三年二月。
    [40]葉怡成,「類神經網路模式應用與實作」,儒林圖書出版,2003。
    [41]M. C. Mabel and E. Fernandez, “Estimation of Energy Yield From Wind Farms Using Artificial Neural Networks,” IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 459–464, Jun. 2009.
    [42]O. S. Ebrahim, M. A. Badr, A. S. Elgendy, and P. K. Jain, “ANN-Based Optimal Energy Control of Induction Motor Drive in Pumping Applications,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 652–660, September 2010.
    [43]K. Y. Lee, J. H. V. Sickel, J. A. Hoffman, W. H. Jung, and S. H. Kim, “Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 2629–2637, December 2010.
    [44]S. V. Puranik, A. Keyhani, F. Khorrami, W. H. Jung, and S. H. Kim, “Neural Network Modeling of Proton Exchange Membrane Fuel Cell,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 474–483, Jun. 2010.
    [45]G. Capizzi, F. Bonanno, and G. M. Tina, “Recurrent Neural Network-Based Modeling and Simulation of Lead-Acid Batteries Charge–Discharge,” IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 435–443, Jun. 2011.
    [46]李國勇,「智慧預測控制及其MATLAB實現」,電子工業出版社,2010年。
    [47]黃炫喬,「基於廣義預測控制理論應用於無線網路式控制系統」
    ,台灣科技大學自動化及控制碩士論文,民國九十九年六月。
    [48]朱凱、王正林,「精通MATLAB神經網絡」,電子工業出版,2010年1月。
    [49]M. M. Gupta, L. Jin, and N.Homma, “Static and Dynamic Neural Networks. New York: Wiley,” 2003.
    [50]蕭子建、王智昱、儲昭偉,「LABVIEW進階篇」,高立圖書,民國八十九年五月。
    [51]蕭子建、王智昱、儲昭偉,「虛擬儀控程式設計-LABVIEW7X」,高立圖書,民國九十三年三月。

    無法下載圖示 全文公開日期 2022/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE