簡易檢索 / 詳目顯示

研究生: 莊汶樺
Wen-Hua Chuang
論文名稱: 基於概念圖知識建構之情境遊戲對學生學習複雜化學問題學習成效之影響
Impacts of a concept mapping-based contextual gaming approach on students' learning complex chemistry problems
指導教授: 黃國禎
Gwo-Jen Hwang
口試委員: 黃國禎
Gwo-Jen Hwang
林奇臻
Chi-Jen Lin
宋涵鈺
Han-Yu Sung
張靜宜
Ching-Yi Chang
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 情境式學習遊戲式學習概念圖問題解決化學課程
外文關鍵詞: contextual learning, game-based learning, concept map, problem solving, chemistry courses
相關次數: 點閱:405下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學是科學領域中重要的學科,也是許多科學的基礎。然而,由於許多化學概念及定理都很抽象,導致學生在理解上相當困難,更不易與真實生活中的問題聯結,因而影響其學習動機。因此,研究人員嘗試透過遊戲式學習來提供應用情境,並透過遊戲本身的趣味性及挑戰來提昇學生的學習動機。另一方面,學者指出,在遊戲中除了提供情境及趣味性之外,若欠缺有效的引導工具,來協助學生組織概念與應用情境的關係,學生可能只是專注在遊戲本身,而沒充分理解及組織知識。為了解決這個問題,本研究提出基於概念圖知識建構的情境式遊戲學習模式,並開發一套針對化學課程的遊戲系統。為了評量此學習模式之成效,本研究採用準實驗設計法,將四個國中二年級的班級分派為一個實驗組及一個控制組。實驗組使用「基於概念圖知識建構之情境遊戲學習模式」,控制組使用「一般情境遊戲學習模式」。本研究比較不同學習模式對於學習者在學習成效、問題解決傾向、科學自我效能、科學學習方法,以及認知負荷是否有所差異。實驗結果發現,使用到基於概念圖知識建構之情境遊戲學習模式之學生,相對於使用一般情境遊戲學習模式之學生,於學習成效上並無顯著差異。不過,此學習模式能夠有效提升學生的問題解決傾向及科學自我效能,且能夠使用較深層之策略解決複雜化學問題。


    Chemistry is an essential subject in the science field and is the foundation of many sciences. Because of the abstract concepts and theorems, students generally have difficulties in learning chemistry as well as connecting the learning content to real-life problems, which causes less learning motivation. Therefore, researchers have tried to adopt game-based learning approach to providing joyful and challenging contexts to improve students' learning motivation. On the other hand, scholars have pointed out that, without effective tools to guide students to associate the relationship between concepts and learning contexts, students could focus only on the gaming missions without fully understanding and organizing the knowledge they have learned during the gaming process. To cope with this problem, in this study, a concept mapping-based contextual gaming model is proposed; moreover, a contextual gaming system for a chemistry course is implemented based on the model. To evaluate the effectiveness of this learning model, a quasi-experiment was conducted by randomly assigning four classes of eighth graders in a junior high school into one experimental group and one control group. The experimental group used the concept mapping-based contextual gaming model, and the control group used the conventional contextual gaming model. The experimental results showed that there was no significant difference in learning achievement between students who used the concept mapping-based contextual gaming model and those who used the the conventional contextual gaming model. However, this learning mode was effective in enhancing students' problem-solving tendency, and scientific self-efficacy, and was able to use deeper strategies to solve complex chemistry problems.

    摘要 2 Abstract 2 第一章 緒論 2 1.1 研究背景與動機 2 1.2 研究目的與問題 2 1.3 名詞解釋 2 1.3.1 情境式學習(Contextual learning) 2 1.3.2 遊戲式學習(Game-based learning) 2 1.3.3 概念圖(Concept map) 2 1.3.4 學習成效(Learning achievement) 2 1.3.5 問題解決傾向(Problem solving tendency) 2 1.3.6 科學自我效能(Science self-efficacy) 2 1.3.7 科學學習方法(Science learning strategies) 2 1.3.8 認知負荷(Cognitive load) 2 1.3.9 序列分析(Sequential analysis) 2 第二章 文獻探討 2 2.1 情境式學習(Contextual learning) 2 2.2 遊戲式學習(Game-based learning) 2 2.3 概念圖(Concept map) 2 第三章 基於概念圖知識建構之情境遊戲 2 3.1 系統架構 2 3.2 情境遊戲系統設計 2 3.3 概念圖建構 2 第四章 研究設計 2 4.1 研究架構 2 4.2 研究對象 2 4.3 研究課程 2 4.4 實驗流程 2 4.5 研究工具 2 4.5.1 自然科學習成效測驗 2 4.5.2 問題解決傾向量表 2 4.5.3 科學自我效能量表 2 4.5.4 科學學習方法量表 2 4.5.5 認知負荷量表 2 4.6 學習行為編碼 2 4.7 資料處理與分析 2 第五章 研究結果 2 5.1 自然科學習成效測驗 2 5.2 問題解決傾向 2 5.3 科學自我效能 2 5.4 科學學習方法 2 5.5 認知負荷 2 5.6 學習歷程分析 2 第六章 結論 2 6.1 研究結果與討論 2 6.1.1 自然科學習成效方面 2 6.1.2 問題解決傾向方面 2 6.1.3 科學自我效能方面 2 6.1.4 科學學習方法方面 2 6.1.5 認知負荷方面 2 6.1.6 學習行為分析 2 6.2 研究限制 2 6.3 研究建議與未來展望 2 參考文獻 2 附件 一 (前測問卷調查) 73 附件 二 (後測問卷調查) 76 附件 三 (化學反應單元學習成效後測驗) 80

    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215.
    Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79.
    Brezovszky, B., McMullen, J., Veermans, K., Hannula-Sormunen, M. M., Rodríguez-Aflecht, G., Pongsakdi, N., Laakkonen, E., Lehtinen, E. (2018). Effects of a mathematics game-based learning environment on primary school students’ adaptive number knowledge. Computers & Education, 128,63–74.
    Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.
    Charsky, D., & Ressler, W. (2011). "Games are made for fun”: Lessons on the effects of concept maps in the classroom use of computer games. Computers & Education, 56(3), 604–615.
    Chee, S. Y., & Tan, K. (2012). Becoming chemists through game-based inquiry learning: The case of legends of alkhimia. Electronic Journal of E-Learning, 10(2), 185–198.
    Cheng, M. T., She, H. C., & Annetta, L. A. (2015). Game immersion experience: Its hierarchical structure and impact on game-based science learning. Journal of Computer Assisted Learning, 31(3), 232-253.
    Chu, H. C., Wang, C. C., & Wang, L. (2019). Impacts of concept map-based collaborative mobile gaming on English grammar learning performance and behaviors. Journal of Educational Technology & Society, 22(2), 86–100.
    Chu, H.-C., Yang, K.-H., & Chen, J.-H. (2014). A time sequence-oriented concept map approach to developing educational computer games for history courses. Interactive Learning Environments, 23(2), 212–229.
    Clark, D. B., Nelson, B. C., Chang, H.-Y., Martinez-Garza, M., Slack, K., & D’Angelo, C. M. (2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers & Education, 57(3), 2178–2195.
    Collins, A., Brown, J. S., & Newman, S. E. (1988). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. Thinking: The Journal of Philosophy for Children, 8(1), 2–10.
    Connolly, T. M., Stansfield, M., & Hainey, T. (2007). An application of games-based learning within software engineering. British Journal of Educational Technology, 38(3), 416–428.
    D' Souza, A. C. D., & Clare, A. C. (2018). Effect of situated learning model on critical problem solving skills among higher secondary pupils. i-manager’s Journal on School Educational Technology, 14(1), 27-34.
    Fu, Q. K., Lin, C. J., Hwang, G. J., & Zhang, L. (2019). Impacts of a mind mapping-based contextual gaming approach on EFL students’ writing performance, learning perceptions and generative uses in an English course. Computers& Education, 137, 59–77.
    Hwang, G. J., Chiu, L.-Y., & Chen, C.-H. (2015). A contextual game-based learning approach to improving students' inquiry-based learning performance in social studies courses. Computers & Education, 81, 13–25.
    Hwang, G. J., Hung, C. M., & Chen, N. S. (2014). Improving learning achievements, motivations and problem-solving skills through a peer assessment-based game development approach. Educational Technology Research and Development, 62(2), 129–145.
    Hwang, G. J., Lee, H. Y., & Chen, C. H. (2019). Lessons learned from integrating concept mapping and gaming approaches into learning scenarios using mobile devices: Analysis of an activity for a geology course. International Journal of Mobile Learning and Organisation, 13(3), 286-308.
    Hwang, G.J., & Wang, S.Y. (2016). Single loop or double loop learning: English vocabulary learning performance and behavior of students in situated computer games with different guiding strategies. Computers & Education, 102, 188–201.
    Hwang, G.-J., Wu, P.-H., & Chen, C.-C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers & Education, 59(4), 1246–1256.
    Hwang, G.-J., Yang, L.-H., & Wang, S.-Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers & Education, 69, 121–130.
    Hodges, G. W., Wang, L., Lee, J., Cohen, A., & Jang, Y. (2018). An exploratory study of blending the virtual world and the laboratory experience in secondary chemistry classrooms. Computers & Education, 122, 179–193.
    Hung, C.-M., Huang, I., & Hwang, G.-J. (2014). Effects of digital game-based learning on students’ self-efficacy, motivation, anxiety, and achievements in learning mathematics. Journal of Computers in Education, 1(2-3), 151–166.
    Kao, G. Y.-M., Chiang, C.-H., & Sun, C.-T. (2017). Customizing scaffolds for game-based learning in physics: Impacts on knowledge acquisition and game design creativity. Computers & Education, 113, 294–312.
    Kao, G. Y. M., Lin, S. S. J., & Sun, C. T. (2008). Breaking concept boundaries to enhance creative potential: Using integrated concept maps for conceptual self-awareness. Computers & Education, 51(4), 1718-1728.
    Ke, F. (2008). Computer games application within alternative classroom goal structures: cognitive, metacognitive, and affective evaluation. Educational Technology Research & Development, 56(5), 539–556.
    Kuo, F. R., Hwang, G. J., & Lee, C. C. (2012). A hybrid approach to promoting students’ web-based problem solving competence and learning attitude. Computers & Education, 58(1), 351–364.
    Lai, C. L., & Hwang, G. J. (2014). Effects of mobile learning time on students’ conception of collaboration, communication, complex problem-solving, meta-cognitive awareness and creativity. International Journal of Mobile Learning and Organisation, 8(3), 276-291.
    Lee, J., & Choi, H. (2017). What affects learner’s higher-order thinking in technology-enhanced learning environments? The effects of learner factors. Computers & Education, 115, 143–152.
    Lee, M. H., Johanson, R. E., & Tsai, C. C. (2008). Exploring Taiwanese high school students’ conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191–220.
    Lin, C.J., Hwang, G.J., Fu, Q.K., & Cao, Y.H. (2020). Facilitating EFL students’ English grammar learning performance and behaviors: A contextual gaming approach. Computers & Education, 152, 1-10.
    Liu, P. L., Chen, C. J., & Chang, Y. J. (2010). Effects of a computer-assisted concept mapping learning strategy on EFL college students’ English reading comprehension. Computers& Education, 54(2), 436–445.
    Mathrani, A., Christian, S., & Ponder-Sutton, A. (2016). PlayIT: Game based learning approach for teaching programming concepts. Educational Technology & Society, 19(2), 5 –17.
    Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or appropriate propositional hierarchies (LIPHs) leading to empowerment of learners. Science Education, 86(4), 548–571.
    Novak, J. D., Gowin, D. B., & Johansen, G. T. (1983). The use of concept mapping and knowledge mapping with junior high school science students. Science Education, 67(5), 625-645.
    Osborne, J., Collins, J. (2001). Pupils’ views of the role and value of the science curriculum: A focus group study. International Journal of Science Education, 23 (5), 441−467.
    Ozmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57(1), 1114–1126.
    Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429-434.
    Pankratius, W. J. (1990). Building an organized knowledge base: Concept mapping and achievement in secondary school physics. Journal of Research in Science Teaching. 27(4), 315-333.
    Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ). MI: National Center for Research to Improve Postsecondary Teaching and Learning. (ERIC Document Reproduction Service No. ED 338122)
    Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., et al. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337–386.
    Scherer, R., & Tiemann, R. (2012). Factors of problem-solving competency in a virtual chemistry environment: The role of metacognitive knowledge about strategies. Computers & Education, 59(4), 1199–1214.
    Shaw, R. S. (2010). A study of learning performance of e-learning materials design with knowledge maps. Computers & Education, 54(1), 253–264.
    Sirhan, G. (2007). Learning difficulties in chemistry: An overview. Journal of Turkish Science Education, 4(2), 2–20.
    Srisawasdi, N., & Kroothkeaw, S. (2014). Supporting students’ conceptual learning and retention of light refraction concepts by simulation-based inquiry with dual-situated learning model. Journal of Computers in Education, 1(1), 49–79.
    Srisawasdi, N., & Panjaburee P. (2019). Implementation of game-transformed inquiry-based learning to promote the understanding of and motivation to learn chemistry. Journal of Science Education and Technology, 28(2), 152-164.
    Sung, H.Y., Hwang, G.J., Lin, C.J., & Hong, T.W. (2017). Experiencing the analects of confucius: An experiential game-based learning approach to promoting students’ motivation and conception of learning. Computers & Education, 110, 143–153.
    Sweller, J., Van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–297.
    Tiemann, R., Annaggar, A. (2020). A framework for the theory-driven design of digital learning environments (FDDLEs) using the example of problem-solving in chemistry education. Interactive Learning Environments, doi:10.1080/10494820.2020.1826981
    Wang, S.L., & Hwang, G.J. (2012). The role of collective efficacy, cognitive quality, and task cohesion in computer-supported collaborative learning. Computers & Education, 58 (2), 679-687
    Wen, C. T., Chang, C. J., Chang, M. H., Chiang, S. H. F., Liu, C. C., Hwang, F. K., &Tsai, C. C. (2018). The learning analytics of model-based learning facilitated by a problem-solving simulation game. Instructional Science, 46(6), 847–867.
    Wouters, P., van Nimwegen, C., van Oostendorp, H., & van der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249–265.
    Yang, Y.-T. C. (2012). Building virtual cities, inspiring intelligent citizens: Digital games for developing students’ problem solving and learning motivation. Computers & Education, 59(2), 365–377.

    無法下載圖示 全文公開日期 2031/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE