簡易檢索 / 詳目顯示

研究生: 房潁桑
YING-SANG FANG
論文名稱: 結合擴增實境與桌遊元素的實境教育遊戲的設計與評估:以空間與邏輯能力培養為例
The Design and Evaluation of an Educational Alternate Reality Game Integrating Augmented Reality and Elements of Board Game: Taking Spatial and Logical Ability Training as an Example
指導教授: 侯惠澤
Huei-Tse Hou
口試委員: 陳聖智
湯梓辰
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 遊戲式學習桌上遊戲實境遊戲擴增實境鷹架理論心流
外文關鍵詞: game-based learning, board game, alternate reality game, augmented reality, scaffolding, flow
相關次數: 點閱:435下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數學教育在基礎教育中扮演著非常重要的角色,不管是程序性的邏輯思考或計算,還是幾何空間的概念與推理,以及利用符號來表達溝通的技巧,每種都是在學習其他學科時必須具備的關鍵能力。本研究開發一款結合擴增實境與桌上遊戲元素的實境教育遊戲「空間迷失」,其中,桌上遊戲架構提供玩家明確的目標及與遊戲配件、空間環境及其他玩家之間的互動方式,讓玩家聚焦於學習內容;實境空間埋藏線索作為多面向鷹架,考驗玩家的觀察力以及團隊成員內部與競爭對手之間的互動策略;擴增實境應用於探尋線索、三維資訊呈現、運算以及檢核機制,輔助玩家培養空間與邏輯能力。學習者可以藉由此遊戲來學習、熟練空間概念與邏輯運算的相關知識與能力,並運用在實境解謎關卡及問題解決上。
    研究以台灣北部兩間學校的58位高中一年級學生為對象,藉由實徵分析來探討學習者們的學習成效、心流狀態、科技接受度、學習動機、遊戲焦慮及多面向情境學習鷹架線索對遊戲體驗與學習之間的影響。研究結果顯示,學生在使用本遊戲進行學習後,學習成效在邏輯運算方面達到顯著進步效果;心流狀態、科技接受度與學習動機的各項維度大部分皆高於中位數,遊戲焦慮顯著低於中位數;多面向情境學習鷹架線索各自發揮了不同的引導作用。此外,本研究也提出未來研究及教學實務的相關建議,供研究者參考。


    Mathematics education plays a very important role in basic education. Procedural logical thinking, calculation, the concept and reasoning of geometric spatial, and symbols communication skills by symbols area the key abilities to learn other subjects. This research develops an educational alternate reality game "Space Lost" that integrating augmented reality and elements of board game. The structure of board game provides players clear goal, game elements, environments and ways of interaction with other players to make players focus on the learning content. Reality space provides hidden clues as multi-faceted scaffolds to exam players’ observation and the interaction strategies between group members and competitors. Augmented reality is used to explore clues, present three-dimensional information, calculation, and checking mechanism to assist players in developing spatial and logical abilities. Learners can use this game to gain spatial concepts and logical operations knowledge and skills, and solve problem in real-world puzzle-solving game.
    Participants are 58 tenth grade students from two high schools in northern Taiwan. The aim of this study is to explore the learners’ learning outcomes, flow status, technology acceptance, learning motivation, game anxiety, and the impact of the scaffolding clues of multi-faceted contextual learning on game experience and learning through empirically analyzed. The results showed that students’ learning outcomes were significantly improved in logical operations. Most of the sub-dimensions of flow state, technology acceptance, and learning motivation are higher than the median, and game anxiety is significant below the median. The multi-faceted contextual scaffolding as clues played different guiding roles. In addition, the study also provided suggestions and implication for future researchers with the results of all empirical analyses.

    摘要 I 目錄 IV 圖次 VIII 表次 IX 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 5 第貳章 文獻探討 7 第一節 空間概念 7 第二節 邏輯運算 9 第三節 遊戲式學習 11 一、桌上遊戲 12 二、實境遊戲 14 三、小結 15 第四節 擴增實境 16 第五節 鷹架理論 18 第六節 心流與焦慮 21 第七節 小結 22 第参章 研究方法 24 第一節 研究設計 24 第二節 研究對象 24 第三節 研究工具 24 一、實境遊戲「空間迷失」 25 二、參與遊戲同意書、基本資料問卷 36 三、學習成效評量(前後測) 36 四、心流問卷 36 五、科技接受度問卷 37 六、學習動機問卷 37 七、遊戲焦慮問卷 38 八、情境學習線索與體驗關係問卷 38 第四節 研究程序 39 第五節 資料蒐集與分析 40 第肆章 研究結果 41 第一節 學習者對於「空間迷失」之學習成效、心流狀態、科技接受度、學習動機與遊戲焦慮 41 一、學習成效 41 二、心流狀態 42 三、科技接受度 43 四、學習動機 44 五、遊戲焦慮 45 第二節 情境學習鷹架線索與遊戲體驗之間的關係 46 第三節 相關與路徑分析 57 一、相關分析 57 二、路徑分析 62 第伍章 討論 66 第一節 學習者對於「空間迷失」之學習成效、心流狀態、科技接受度、學習動機與遊戲焦慮 66 第二節 各種線索與遊戲體驗之間的關係 67 第三節 相關與路徑分析 69 第陸章 結論與建議 71 第一節 結論 71 第二節 建議 74 一、遊戲系統發展方面 74 二、教學實務運用方面 75 三、未來研究上的建議 75 參考文獻 77 附錄一:參與施測同意書 86 附錄二:基本資料問卷 87 附錄三:學習成效評量 88 附錄四:心流問卷 93 附錄五:科技接受度問卷 94 附錄六:學習動機問卷 95 附錄七:遊戲焦慮問卷 97 附錄八:情境學習線索與體驗關係問卷 98

    房潁桑、林于正、侯惠澤 (2020,已接受)。結合擴增實境技術與桌遊的空間與邏輯實境教育遊戲的設計與評估。Global Chinese Conference on Computers in Education 2020,蘭州,中國。
    房潁桑、侯惠澤、李明娟、陳怡婷 (2018年7月)。運用線索推論認知設計之地理科解謎桌上遊戲的設計與成效分析。The 9th Global Chinese Conference on Inquiry Learning : Innovations and Applications (GCCIL, 2018),蘭州,中國。
    侯惠澤、林韋伸、李明娟、王嘉萍、沈秀君 (2016年7月)。化學領域教育型桌上遊戲「化學事」之設計與遊戲評估:學習成效、心流投入與性別差異之分析。Global Chinese Conference on Innovation & Applications in Inquiry Learning 2016,深圳,中國。
    侯惠澤、劉力君 (2015年7月)。桌上遊戲輔助歷史教學:結合認知鷹架之桌遊「走過。台灣」於中學歷史科教學之學習者心流、接受度與學習成效分析。Global Chinese Conference on Innovation & Applications in Inquiry Learning 2015,無錫,中國。
    洪美雪 (2001)。字幕對外語學習成效影響之探究。國立成功大學教育研究所碩士論文,台南市。取自https://hdl.handle.net/11296/sx7ca2
    孫琇瑩 (2000)。不同程度動機提升策略對國小學童網頁教材學習動機之影響。國立花蓮師範學院國小科學教育研究所碩士論文,花蓮縣。取自https://hdl.handle.net/11296/6a77bc
    莊筱玉、傅敏芳(民92年5月)。ARCS教學模式對英文重修生學習動機影響之研究-以美和技術學院為例。彰化師大教育學報,4,47-74。
    郭芝辰、侯惠澤、李明娟、林上瑜、黃玉如 (2018年7月)。結合情境脈絡分析機制的素養導向英文教育桌上遊戲的設計與評估。The 9th Global Chinese Conference on Inquiry Learning : Innovations and Applications (GCCIL,2018),蘭州,中國。
    廖志昇 (2004)。研究生學習動機與學習滿意度關係之研究-以師院在職進修碩士班為例。國立屏東師範學院國民教育研究所碩士論文,屏東縣。取自https://hdl.handle.net/11296/zth7rq
    韓佳玲 (2002)。網路匿名競爭對學習經驗之影響。國立成功大學教育研究所碩士論文,台南市。取自https://hdl.handle.net/11296/qzbf49
    An, J., Poly, L. P., & Holme, T. A. (2019). Usability Testing and the Development of an Augmented Reality Application for Laboratory Learning. Journal of Chemical Education, 97(1), 97-105.
    Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges.
    Arrabal-Campos, F. M., Cortés-Villena, A., & Fernández, I. (2017). Building “My First NMRviewer”: A Project Incorporating Coding and Programming Tasks in the Undergraduate Chemistry Curricula.
    Avilés‐Cruz, C., & Villegas‐Cortez, J. (2019). A smartphone‐based augmented reality system for university students for learning digital electronics. Computer Applications in Engineering Education, 27(3), 615-630.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Bado, N. (2019). Game-based learning pedagogy: a review of the literature. Interactive Learning Environments, 1-13.
    Bogomolova, K., van der Ham, I. J., Dankbaar, M. E., van den Broek, W. W., Hovius, S. E., van der Hage, J. A., & Hierck, B. P. (2019). The effect of stereoscopic Augmented Reality visualization on learning anatomy and the modifying effect of visual‐spatial abilities: a double‐center randomized controlled trial. Anatomical Sciences Education.
    Boole, G. (1848). The calculus of logic. Cambridge and Dublin Mathematical Journal, 3, 183-98.
    Burguillo, J. C. (2010). Using game theory and competition-based learning to stimulate student motivation and performance. Computers & Education, 55(2), 566-575.
    Catal, C., Akbulut, A., Tunali, B., Ulug, E., & Ozturk, E. (2019). Evaluation of augmented reality technology for the design of an evacuation training game. Virtual Reality, 1-10.
    Cavalho, J. C. Q. D., Beltramini, L. M., & Bossolan, N. R. S. (2019). Using a board game to teach protein synthesis to high school students. Journal of Biological Education, 53(2), 205-216.
    Chang, Y. S., Hu, K. J., Chiang, C. W., & Lugmayr, A. (2020). Applying Mobile Augmented Reality (AR) to Teach Interior Design Students in Layout Plans: Evaluation of Learning Effectiveness Based on the ARCS Model of Learning Motivation Theory. Sensors, 20(1), 105-129.
    Charsky, D., & Ressler, W. (2011). “Games are made for fun”: Lessons on the effects of concept maps in the classroom use of computer games. Computers & Education, 56(3), 604-615.
    Chen, C. H., & Law, V. (2016). Scaffolding individual and collaborative game-based learning in learning performance and intrinsic motivation. Computers in Human Behavior, 55, 1201-1212.
    Chen, C. H., Law, V., & Chen, W. Y. (2018). The effects of peer competition-based science learning game on secondary students’ performance, achievement goals, and perceived ability. Interactive Learning Environments, 26(2), 235-244.
    Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of science education and technology, 22(4), 449-462.
    Collins, A., Brown, J. S., & Newman, S. E. (1988). Cognitive apprenticeship: Teaching the craft of reading, writing and mathematics. Thinking: The Journal of Philosophy for Children, 8(1), 2-10.
    Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety: The experience of Play in Word and Games. (5th ed.) California: Jossey-Bass.
    da Silva Júnior, J. N., Uchoa, D. E. D. A., Sousa Lima, M. A., & Monteiro, A. J. (2019). Stereochemistry Game: Creating and Playing a Fun Board Game To Engage Students in Reviewing Stereochemistry Concepts. Journal of Chemical Education, 96(8), 1680-1685.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
    de la Peña Esteban, F. D., Torralbo, J. A. L., Casas, D. L., & García, M. C. B. (2020). Web gamification with problem simulators for teaching engineering. Journal of Computing in Higher Education, 32(1), 135-161.
    Dondlinger, M. J., & Wilson, D. A. (2012). Creating an alternate reality: Critical, creative, and empathic thinking generated in the Global Village Playground capstone experience. Thinking Skills and Creativity, 7(3), 153-164.
    Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2020). Computational thinking in programming with scratch in primary schools: A systematic review. Computer Applications in Engineering Education, 1-17.
    Fiorella, L., Kuhlmann, S., & Vogel-Walcutt, J. J. (2019). Effects of playing an educational math game that incorporates learning by teaching. Journal of Educational Computing Research, 57(6), 1495-1512.
    Gilliam, M., Jagoda, P., Fabiyi, C., Lyman, P., Wilson, C., Hill, B., & Bouris, A. (2017). Alternate reality games as an informal learning tool for generating STEM engagement among underrepresented youth: A qualitative evaluation of the source. Journal of Science Education and Technology, 26(3), 295-308.
    Gresalfi, M. S., Rittle-Johnson, B., Loehr, A., & Nichols, I. (2018). Design matters: explorations of content and design in fraction games. Educational Technology Research and Development, 66(3), 579-597.
    Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational researcher, 42(1), 38-43.
    Habig, S. (2020). Who can benefit from augmented reality in chemistry? Sex differences in solving stereochemistry problems using augmented reality. British Journal of Educational Technology, 51(3), 629-644.
    Hao, K. C., & Lee, L. C. (2019). The development and evaluation of an educational game integrating augmented reality, ARCS model, and types of games for English experiment learning: an analysis of learning. Interactive Learning Environments, 1-14.
    Hogle, J. G. (1996). Considering games as cognitive tools: In search of effective" edutainment." (p. 28). ERIC Clearinghouse.
    Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233.
    Hou, H. T., & Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Lab© for learning electromagnet concept. ICCE 2012, 38.
    Hsieh, Y. H., Yi-Chun, L., & Hou, H. T. (2015). Exploring elementary-school students' engagement patterns in a game-based learning environment. Journal of Educational Technology & Society, 18(2), 336.
    Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
    Huang, Y. M., Huang, S. H., & Wu, T. T. (2014). Embedding diagnostic mechanisms in a digital game for learning mathematics. Educational Technology Research and Development, 62(2), 187-207.
    Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers & Education, 59(4), 1246-1256.
    Ibáñez, M. B., Portillo, A. U., Cabada, R. Z., & Barrón, M. L. (2020). Impact of augmented reality technology on academic achievement and motivation of students from public and private Mexican schools. A case study in a middle-school geometry course. Computers & Education, 145, 103734.
    Ingrassia, P. L., Mormando, G., Giudici, E., Strada, F., Carfagna, F., Lamberti, F., & Bottino, A. (2020). Augmented Reality Learning Environment for Basic Life Support and Defibrillation Training: Usability Study. Journal of medical Internet research, 22(5), e14910.
    Jacobson, T., & Xu, L. (2002). Motivating students in credit-based information literacy courses: Theories and practice. portal: Libraries and the Academy, 2(3), 423-441.
    Jeannette, M. W. (2006). Computational Thinking" communications of the ACM. March, 49(3), 33-35.
    Jerrett, A., Bothma, T. J., & De Beer, K. (2017). Exercising library and information literacies through alternate reality gaming. Aslib Journal of Information Management.
    Jo, I., & Hong, J. E. (2020). Effect of Learning GIS on Spatial Concept Understanding. Journal of Geography, 119(3), 87-97.
    Ke, F. (2019). Mathematical problem solving and learning in an architecture-themed epistemic game. Educational Technology Research and Development, 67(5), 1085-1104.
    Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2-10.
    Keller, J., & Suzuki, K. (2004). Learner motivation and e-learning design: A multinationally validated process. Journal of educational Media, 29(3), 229-239.
    Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments.
    Kiili, K. (2007). Foundation for problem‐based gaming. British journal of educational technology, 38(3), 394-404.
    Kim, B., Park, H., & Baek, Y. (2009). Not just fun, but serious strategies: Using meta-cognitive strategies in game-based learning. Computers & Education, 52(4), 800-810.
    Kim, S., & Chang, M. (2010). Computer games for the math achievement of diverse students. Journal of Educational Technology & Society, 13(3), 224-232.
    Kolb, D. A. (1976). Learning style inventory technical manual. Boston: McBer.
    Krashen, S. D. (1981). Second language acquisition and second language learning. University of Southern California.
    Kuo, W. C., & Hsu, T. C. (2020). Learning computational thinking without a computer: How computational participation happens in a computational thinking board game. The Asia-Pacific Education Researcher, 29(1), 67-83.
    Kuo, C. C., Fang, Y. S., Lia, Y. Y., Wang, S. M., & Hou, H. T. (2020, accepted) A Preliminary Study of A Business-Management/Strategic-Planning Board Game with Situated Learning Mechanisms, paper presented at 14th European Conference on Games Based Learning (ECGBL20), Brighton, UK on the 24th – 25th September 2020.
    Li, C. T., Keng, S. H., Li, Y. Y., Fang, Y. S., Hou, H. T. (2018, November). The Development and Evaluation of an Educational Board Game Integrated with Augmented Reality, Role-Playing, and Situated Cases for Anti-Drug Education, paper presented at ICCE International Conference on Computers in Education (ICCE2018), Manila, the Philippines.
    Lin, C. H., & Chen, C. M. (2016). Developing spatial visualization and mental rotation with a digital puzzle game at primary school level. Computers in Human Behavior, 57, 23-30.
    Lin, Y. T., Yeh, M. K. C., & Hsieh, H. L. (2020). Teaching computer programming to science majors by modelling. Computer Applications in Engineering Education.
    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 1479-1498.
    Maryam, B., Sören, H., & Gunilla, L. (2020). Putting scaffolding into action: preschool teachers’ actions using interactive whiteboard. Early Childhood Education Journal, 48(1), 79-92.
    McLaren, B. M., Adams, D. M., Mayer, R. E., & Forlizzi, J. (2017). A computer-based game that promotes mathematics learning more than a conventional approach. International Journal of Game-Based Learning (IJGBL), 7(1), 36-56.
    Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995, December). Augmented reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and telepresence technologies (Vol. 2351, pp. 282-292). International Society for Optics and Photonics.
    Monjelat, N., Méndez, L., & Lacasa, P. (2017). Becoming a tutor: student scaffolding in a game-based classroom. Technology, Pedagogy and Education, 26(3), 265-282.
    Moore, T. J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C., Hynes, M. M., & Gajdzik, E. (2020). Multiple representations in computational thinking tasks: a clinical study of second-grade students. Journal of Science Education and Technology, 29(1), 19-34.
    Mostowfi, S., Mamaghani, N. K., & Khorramar, M. (2016). Designing Playful Learning by Using Educational Board Game for Children in the Age Range of 7-12:(A Case Study: Recycling and Waste Separation Education Board Game). International Journal of Environmental and Science Education, 11(12), 5453-5476.
    Nelson, L. M. (1999). Collaborative Problem Solving,” Instructional-Design Theories and Models: A New Paradigm of Instructional Theory. Ed. CM Reigeluth.
    Otterborn, A., Schönborn, K. J., & Hultén, M. (2019). Investigating Preschool Educators’ Implementation of Computer Programming in Their Teaching Practice. Early Childhood Education Journal, 1-10.
    Piñeiro-Otero, T., & Costa, C. (2015). ARG (juegos de realidad alternativa). Contribuciones, limitaciones y potencialidades para la docencia universitaria. Comunicar, 22(44), 141-148.
    Prensky, M. (2001). Why games engage us. Digital Game-Based Learning, New York: McGraw-Hill.
    Prit Kaur, D., Mantri, A., & Horan, B. (2019). Design implications for adaptive augmented reality based interactive learning environment for improved concept comprehension in engineering paradigms. Interactive Learning Environments, 1-19.
    RESouRCE, A., & GuidE, P. (2008). 21st Century Skills, Education & Competitiveness. Partnership for 21st Century Skills. Retrieved May, 15, 2015.
    Sáez-López, J. M., Sevillano-García, M. L., & Vazquez-Cano, E. (2019). The effect of programming on primary school students’ mathematical and scientific understanding: educational use of mBot. Educational Technology Research and Development, 67(6), 1405-1425.
    Safapour, E., Kermanshachi, S., & Taneja, P. (2019). A review of nontraditional teaching methods: Flipped classroom, Gamification, case study, self-learning, and social media. Education Sciences, 9(4), 273.
    Sahin, D., & Yilmaz, R. M. (2020). The effect of Augmented Reality Technology on middle school students' achievements and attitudes towards science education. Computers & Education, 144, 103710.
    Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77-96.
    Shin, S., Brush, T. A., & Glazewski, K. D. (2020). Examining the hard, peer, and teacher scaffolding framework in inquiry-based technology-enhanced learning environments: impact on academic achievement and group performance. Educational Technology Research and Development, 1-25.
    Small, R. V., Zakaria, N., & El-Figuigui, H. (2004). Motivational aspects of information literacy skills instruction in community college libraries. College & Research Libraries, 65(2), 96-121.
    Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 106316.
    Thomson, D., Casey, B. M., Lombardi, C. M., & Nguyen, H. N. (2020). Quality of fathers’ spatial concept support during block building predicts their daughters’ early math skills–but not their sons’. Early Childhood Research Quarterly, 50, 51-64.
    Tobias, S. (1986). Anxiety and cognitive processing of instruction. Self-related cognition in anxiety and motivation, 35-54.
    Tsai, J. C., Cheng, P. H., Liu, S. Y., & Chang, C. Y. (2019). Using board games to teach socioscientific issues on biological conservation and economic development in Taiwan. Journal of Baltic Science Education, 18(4), 634.
    Verkijika, S. F., & De Wet, L. (2015). Using a brain-computer interface (BCI) in reducing math anxiety: Evidence from South Africa. Computers & Education, 81, 113-122.
    Vogt, F., Hauser, B., Stebler, R., Rechsteiner, K., & Urech, C. (2018). Learning through play–pedagogy and learning outcomes in early childhood mathematics. European Early Childhood Education Research Journal, 26(4), 589-603.
    Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
    Zafar, S., & Zachar, J. J. (2020). Evaluation of HoloHuman augmented reality application as a novel educational tool in dentistry. European Journal of Dental Education, 24(2), 259-265.
    Zheng, L., Li, X., Zhang, X., & Sun, W. (2019). The effects of group metacognitive scaffolding on group metacognitive behaviors, group performance, and cognitive load in computer-supported collaborative learning. The Internet and Higher Education, 42, 13-24.
    Zippert, E. L., Douglas, A. A., Smith, M. R., & Rittle-Johnson, B. (2020). Preschoolers’ broad mathematics experiences with parents during play. Journal of Experimental Child Psychology, 192, 104757.

    QR CODE