簡易檢索 / 詳目顯示

研究生: 陳鏡安
Ching-An Chen
論文名稱: 利用改變圓柱陣列與披覆二氧化釕奈米結構增強奈米碳管之場發射特性
Enhancing Field Emission Characteristics by Adjusting Carbon Nanotube Bundle Arrays and Coating RuO2 nanostructures
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
趙良君
Liang-Chiun Chao
邱博文
Po-Wen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 58
中文關鍵詞: 奈米碳管柱狀陣列二氧化釕場發射
外文關鍵詞: carbon nanotube, bundle array, RuO2, field emission
相關次數: 點閱:507下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管由於其高長徑比、低功函數等特性,被視為是下一世代場發射顯示器之理想材料。然而,要達到實際量產的程度,仍有許多問題需要克服,例如:穩定性、均勻性等。本實驗討論了兩種改善奈米碳管場發射特性的方法,分別是尋找最佳的奈米碳管柱陣列與披覆金屬氧化物二氧化釕。這兩種方式分別有助於減少屏蔽效應與延長場發射壽命。由實驗結果我們得到,當奈米碳管柱高度為間距的一半時,有最佳場發射特性,我們將原因歸咎於,以此方式排列之奈米碳管柱陣列的密度與屏蔽效應達到最佳的平衡點。然而,當奈米碳管柱高度為間距的三分之一時,有較為穩定的場發射電流,我們將原因歸咎於,其單位面積的碳管柱受熱較少,於是降低了奈米碳管劣化的機會。在披覆二氧化釕的實驗方面,實驗結果成功的將垂直成長於矽基板上之奈米碳管薄膜,以有機金屬氧化物化學氣相沉積法披覆一層金屬氧化物二氧化釕,利用二氧化釕的金屬氧化物性質,增強奈米碳管於場發射方面的特性,不僅改善奈米碳管在場發射上之耐久性與穩定性,並且有效降低起始電場與臨界電場。


    Carbon nanotubes (CNTs) are promising candidates for cold cathode electron field emitters in the next generation of field emission displays (FED). Some critical properties such as emission current density, stability and uniformity should be guaranteed before they can become commercial products. In order to construct a useful device, this study discusses two methods to modify the field emission performance. One is to set up an optimum arrangement of carbon nanotube arrays, and the other is to coat RuO2 on CNTs. These two methods could reduce the screening effect and elongate the lifetime of CNT based emitters, respectively. The optimum inter-bundle distance was found to be twice their height: the possible cause being that the number density of bundles compared to the screening effect generated a greater effect on field emission. However, a relatively stable emission current was measured from the samples whose inter-bundle distance was triple their height. It is assumed that the reason for this is that the bundles suffered less Joule heating per unit area during the measurement. Moreover, the process of covering the tips of CNTs with a thin film of RuO2 eventually obtained the best matching of these two elements. The study not only enhanced the field emission performance of CNTs, but also extended field emission lifetime by applying a thin film of RuO2 on the CNT tips.

    Contents Abstract (in Chinese) ------------------------------------------------- I Abstract (in English) ------------------------------------------------- II Acknowledgement (in Chinese) ------------------------------------------ III Contents -------------------------------------------------------------- IV Figure captions ------------------------------------------------------- VI Table list ------------------------------------------------------------ IX Chapter 1 Introduction ------------------------------------------------ 1 1.1 The development of displays and relation to carbon nanotubes--- 1 1.2 Structure and properties of carbon nanotubes------------------- 4 1.2.1 Categories of carbon nanotubes--------------------------------- 5 1.2.2 Properties of carbon nanotubes--------------------------------- 6 1.2.3 Applications of carbon nanotubes------------------------------- 8 1.3 Theory of field mission---------------------------------------- 10 1.3.1 Fowler-Nordheim relation--------------------------------------- 10 1.3.2 Effects on field emission-------------------------------------- 11 1.4 Motivation----------------------------------------------------- 12 1.4.1 Arrangements of carbon nanotube arrays------------------------- 12 1.4.2 RuO2-coated carbon nanotubes----------------------------------- 13 Chapter 2 Experimental methods ---------------------------------------- 15 2.1 Experimental process flow chart-------------------------------- 15 2.2 Manufacturing procedure---------------------------------------- 16 2.2.1 Substrate preparation------------------------------------------ 16 2.2.2 Photolithography----------------------------------------------- 16 2.2.3 E-beam evaporation--------------------------------------------- 18 2.2.4 The synthesis of carbon nanotubes------------------------------ 19 2.2.5 The coverage of RuO2------------------------------------------- 22 2.3 Analysis and characterization---------------------------------- 24 2.3.1 Scanning electron microscopy and energy dispersive X-ray spectroscope ----------------------------------------------------------------------- 24 2.3.2 Transmission electron microscopy------------------------------- 25 2.3.3 Raman spectroscopy--------------------------------------------- 25 2.3.4 Field emission measurement------------------------------------- 26 Chapter 3 Results and discussion -------------------------------------- 30 3.1 Arrangements of carbon nanotube bundles------------------------ 30 3.1.1 Ratio of height to inter-bundle distance----------------------- 30 3.1.2 Different geometric arrangements------------------------------- 31 3.1.3 Field emission measurements------------------------------------ 33 3.1.4 Long-term measurements----------------------------------------- 36 3.1.5 Fluorescence--------------------------------------------------- 39 3.2 RuO2-coated carbon nanotubes----------------------------------- 41 3.2.1 Morphologies--------------------------------------------------- 41 3.2.2 Analysis------------------------------------------------------- 43 3.2.3 Field emission measurements ----------------------------------- 45 3.2.4 Long-term measurements----------------------------------------- 45 3.3 RuO2-coated carbon nanotube bundle arrays---------------------- 47 Chapter 4 Conclusions ------------------------------------------------- 50 References ------------------------------------------------------------ 52 Resume ---------------------------------------------------------------- 58 Publication list ------------------------------------------------------ 59

    References

    [1] S. Itoh, T. Watanabe, K. Ohtsu, M. Taniguchi, S. Uzawa, and N. Nishimura, "Experimental study of field emission properties of the Spindt-type field emitter," in 7th International Vacuum Microelectronics Conference, Grenoble, France, pp. 487-490, 1995.
    [2] K. L. Ng, J. Yuan, J. T. Cheung, and K. W. Cheah, "Electron field emission characteristics of electrochemical etched Si tip array," Solid State Commun., vol. 123, pp. 205-207, 2002.
    [3] M. W. Geis, J. C. Twichell, and T. M. Lyszczarz, "Diamond emitters fabrication and theory," in The eighth international vacuum microelectronics conference, Portland, Oregon (USA), pp. 2060-2067, 1996.
    [4] S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, "Field-emission studies on thin films of zinc oxide nanowires," Appl. Phys. Lett., vol. 83, pp. 4821-4823, 2003.
    [5] D. C. Lim, H. S. Ahn, D. J. Choi, C. H. Wang, and H. Tomokage, "The field emission properties of silicon carbide whiskers grown by CVD," Surf. Coat. Technol., vol. 168, pp. 37-42, 2003.
    [6] 成會明, 奈米碳管, 2 ed. 台北: 五南圖書出版股份有限公司, 2006.
    [7] E. Ertekin and D. C. Chrzan, "Ideal torsional strengths and stiffnesses of carbon nanotubes," Phys. Rev. B, vol. 72, pp. 045425-1-045425-5, 2005.
    [8] J. W. Mintmire and C. T. White, "Electronic and structural properties of carbon nanotubes," Carbon, vol. 33, pp. 893-902, 1995.
    [9] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
    [10] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: a new form of carbon," Nature, vol. 347, pp. 354-358, 1990.
    [11] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
    [12] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603-605, 1993.
    [13] L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Chi, “Stretchable, porous, and conductive energy textiles,” Nano Lett., vol. 10, pp. 708-714, 2010.
    [14] A. Kongkanand, R. M. Dominguez, and P. V. Kamat, “Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons,” Nano Lett. vol. 7, pp. 676-680, 2007.
    [15] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proc. R. Soc. London A, vol. 119, pp. 173-181, 1928.
    [16] F. Arai, P. Liu, L. Dong, T. Fukuda, T. Noguchi, and K. Tatenuma, "Pure metal deposit using multi-walled carbon nanotubes decorated with ruthenium dioxide super-nanoparticles," in 2004 4th IEEE Conference on Nanotechnology, Munich, pp. 196-198, 2004.
    [17] S. K. Srivastava, V. D. Vankar, D. V. Sridhar Rao, and V. Kumar, "Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process," Thin Solid Films, vol. 515, pp. 1851-1856, 2006.
    [18] K. S. Hazra, P. Rai, D. R. Mohapatra, N. Kulshrestha, R. Bajpai, S. Roy, and D. S. Misra, "Dramatic enhancement of the emission current density from carbon nanotube based nanosize tips with extremely low onset fields" ACS Nano, vol. 3, pp. 2617–2622, 2009.
    [19] D. Shiffler, O. Zhou, C. Bower, M. LaCour, and K. Golby, "A high-current, large-area, carbon nanotube cathode," IEEE Transactions on Plasma Science, vol. 32, pp. 2152-2154, 2004.
    [20] A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley, L. Lou, S. G. Kim, and D. Tomanek, "Unraveling Nanotubes: Field Emission from an Atomic Wire," Science, vol. 269, pp. 1550-1553, 1995.
    [21] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett., vol. 76, pp. 2071-2073, 2000.
    [22] X.-Q. Wang, Y.-B. Xu, H.-L. Ge, and M. Wang, “Optimization for field emission from carbon nanotubes array in hexagon,” Diamond Relat. Mater., vol. 15, pp. 1565-1569, 2006.
    [23] J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, “Study of the field-screening effect of highly ordered carbon nanotube arrays,” Appl. Phys. Lett., vol. 80, pp. 2392-2394, 2002.
    [24] R. C. Smith and S. R. P. Silva, “Maximizing the electron field emission performance of carbon nanotube arrays,” Appl. Phys. Lett., vol. 94, pp. 133104-1-133104-3, 2009.
    [25] T.-W. Weng, Y.-H. Lai, and K.-Y. Lee, “Area effect of patterned carbon nanotube bundle on field electron emission characteristics,” Appl. Surf. Sci., vol. 254, pp. 7755-7758, 2008.
    [26] M. Katayama, K.-Y. Lee, S. Honda, T. Hirao, and K. Oura, “Ultra-Low-Threshold Field Electron Emission from Pillar Array of Aligned Carbon Nanotube Bundles,” Jpn. J. Appl. Phys., vol. 43, pp. L774-L776, 2004.
    [27] D. Kim, S. H. Lim, A. J. Guilley, C. S. Cojocaru, J. E. Bouree, L. Vila, J. H. Ryu, K. C. Park, and J. Jang, “Growth of vertically aligned arrays of carbon nanotubes for high field emission,” Thin Solid Films, vol. 516, pp. 706-709, 2008.
    [28] S. Kim, E. Cho, S. Han, Y. Cho, S. H. Cho, C. Kim, and J. Ihm, “Microscopic origin of current degradation of fully-sealed carbon-nanotube field emission display,” Solid State Commun., vol. 149, pp. 670-672, 2009.
    [29] Y. Cho, C. Kim, H. Moon, Y. Choi, S. Park, C. Lee, and S. Han, “Electronic structure tailoring and selective adsorption mechanism of metal-coated nanotubes,” Nano Lett., vol. 8, pp. 81-86, 2008.
    [30] C. Liu, K. S. Kim, J. Baek, Y. Cho, S. Han, S. W. Kim, N. K. Min, Y. Choi, J. U. Kim, and C. J. Lee, ” Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles,” Carbon, vol. 47, pp. 1158-1164, 2009.
    [31] R. B. Rakhi, A. L. M. Reddy, M. M. Shaijumon, K. Sethupathi, and S. Ramaprabhu, “Electron field emitters based on multiwalled carbon nanotubes decorated with nanoscale metal clusters,” J. Nanopart. Res., vol. 10, pp.179-189, 2008.
    [32] Y. S. Min, E. J. Bae, J. B. Park, and U. J. Kim, “ZnO nanoparticle growth on single-walled carbon nanotubes by atomic layer deposition and a consequent lifetime elongation of nanotube field emission,” Appl. Phys. Lett., vol. 90, pp. 263104-1-263104-3, 2007.
    [33] W. T. Lim, K. R. Cho, and C. H. Lee, “Structural and electrical properties of rf-sputtered RuO2 films having different conditions of preparation,” Thin solid Films, vol. 348, pp. 56-62, 1999.
    [34] L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2,” Phys. Rev. B, vol. 13, pp. 2433-2450, 1976.
    [35] C. S. Hsieh, D. S. Tsai, R. S. Chen, and Y. S. Huang, “Preparation of ruthenium dioxide nanorods and their field emission characteristics,” Appl. Phys. Lett., vol. 85, pp. 3860-3862, 2004.
    [36] S. Fujii, S.-I. Honda, H. Machida, H. Kawai, K. Ishida, and M. Katayama, “Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect,” Appl. Phys. Lett., vol. 90, pp. 153108-1-153108-3, 2007.
    [37] T. Matsuda, M. Mesko, A. Ogino, and M. Nagatsu, “Synthesis of vertically aligned carbon nanotubes on submicron-sized dot-catalyst array using plasma CVD method,” Diamond Relat. Mater., vol. 17, pp. 772-775, 2008.
    [38] Y. Cheng and O. Zhou, “Electron field emission from carbon nanotubes,” C. R. Phys., vol. 4, pp. 1021-1033, 2003.
    [39] V. K. Kayastha, B. Ulmen, and Y. K. Yap, “Effect of graphitic order on field emission stability of carbon nanotubes” Nanotechnology, vol. 18, pp. 035206-1-035206-4, 2007.
    [40] A. Pandey, A. Prasad, J. Moscatello, B. Ulmen, and Y. K. Yap, “Enhanced field emission stability and density produced by conical bundles of catalyst-free carbon nanotubes,” Carbon, vol. 48, pp. 287-292, 2010.
    [41] A. Korotcov, H. P. Hsu, Y. S. Huang, P. C. Liao, D. S. Tsai, and K. K. Tiong, “Deposition and characterization of 1D RuO2 nanocrystals by reactive sputtering,” J. Alloys Compd., vol. 442, pp. 310-312, 2007.
    [42] W. S. Bacsa, D. Ugarte, A. Chatelain, and W. A. de Heer, “High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes,” Phys. Rev. B, vol. 50, pp. 15473-15476, 1994.
    [43] P. Liu, Q. Sun, F. Zhu, K. Jiang, L. Liu, Q. Li, and S. Fan, “Measuring the work function of carbon nanotubes with thermionic method,” Nano Lett., vol. 8, pp. 647-651, 2008.
    [44] K. M. Glassford and J. R. Chelikowsky, “Electronic and structural properties of RuO2,” Phys. Rev. B, vol. 47, pp. 1732-1741, 1993.
    [45] R. G. Vadimsky, R. P. Frankenthal, and D. E. Thompson, “Ru and RuO2 as Electrical Contact Materials: Preparation and Environmental Interactions,” J. Electrochem. Sac., vol. 126, pp. 2017-2023, 1979.

    無法下載圖示 全文公開日期 2015/06/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE