簡易檢索 / 詳目顯示

研究生: Niklas Boenninghoff
Niklas Boenninghoff
論文名稱: 微米尺寸鉬金屬網狀電極之製備與性質探討
Preparation and Characterization of Micron Scale Molybdenum Metal Mesh Electrodes
指導教授: 朱 瑾
Jinn P. Chu
口試委員: 黃炳照
Bing-Joe Hwang
張佳文
Chia-wen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 80
中文關鍵詞: 金屬網狀電極微米尺寸圖案透明導電電極薄膜磁控濺鍍硒化銅銦鎵薄膜太陽能電池
外文關鍵詞: metal mesh, micro mesh, transparent conductive electrode, molybdenum, thin film, PE PVD, magnetron sputtering, CIGS
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透明導電氧化物薄膜(Transparent conductive oxides, TCO)為一種兼具透明與導電兩種特性的材料,故被廣泛地應用於不同的電子設備上,如發光二極體、觸控面板與太陽能電池。然而在硒化銅銦鎵(Copper Indium Gallium Diselenide, CIGS)薄膜太陽能電池的製程中吸收層最佳之成長溫度為500°C到600°C,透明導電氧化物並不適合應用於如此高溫之製程且仍有許多改善的空間。此外,在堆疊型太陽能電池的研究中,透明接點亦為重要之需求,故高結合性以及高透光性之電極是必須的。在本研究中,以四種不同微米尺度之圖案的鉬金屬網狀電極取代堆疊型太陽能電池中的透明導電氧化物薄膜。除了評估鉬金屬網狀電極之微觀結構、晶體取向、表面粗糙度與電性外,也比較鉬金屬網狀電極在不同濺鍍參數(功率和工作壓力)下之效能。所有圖案的鉬金屬網狀電極,在穿透率的試驗中不論是在可見光或其他波長範圍,皆表現出高達97%之高透光性以及30 Ω/□的片電阻。


    Transparent conductive oxide (TCO) electrodes find application in a wide variety of devices, like light-emitting diodes, displays and solar cells. TCOs however are not suitable for high temperature manufacturing processes like CIGS (Copper Indium Gallium Diselenide) thin film processing, which takes place at 500°C to 600°C and suffer from a number of different drawbacks. The electrode on which CIGS is deposited must be stable at these temperatures. To realize a tandem cell, both, front and back contact of a cell must be transparent. In this work a molybdenum metal mesh electrode with four pattern derivatives is presented, which are designed towards this implementation in a tandem cell setup. The electrode consists of 2 micron wide fingers arranged in an industry typical H-grid pattern and in a hexagonal shaped pattern, with each of these patterns being comprised of a derivative with and without tapered busbars. The electrode’s micro structure, crystal orientation, surface roughness, electrical properties and optical properties are investigated. The manufacturing process as well as a comparison of this works electrodes with various competing electrode types is also presented. All electrode derivatives show excellent transmittance of up to 97% within and beyond the visible spectrum while retaining acceptable sheet resistances of about 30 Ω/□.

    Table of Figures Table of Tables Table of Abbreviations 1 Introduction 1 1.1 TCO and its replacement 1 1.2 Goal of research 2 2 Background science 4 2.1 Structure of photovoltaic cells 4 2.1.1 Crystalline silicon based cell 4 2.1.2 CIGS thin-film cells 5 2.2 N-and p-type semiconductors 6 2.3 Recombination 7 2.3.1 Radiative recombination 7 2.3.2 Auger recombination 8 2.3.3 Shockley-Read-Hall recombination 8 2.3.4 Surface recombination 8 2.4 Parasitic resistances of a solar cell 9 2.4.1 Series resistance 9 2.4.2 Shunt resistance 9 2.5 Quantum efficiency 10 2.6 Photolithography 11 2.6.1 Substrate cleaning 12 2.6.2 Priming 12 2.6.3 Spin coating 12 2.6.4 Soft bake 13 2.6.5 Exposure 13 2.6.6 Post exposure bake 13 2.6.7 Development 13 2.6.8 Hard bake 13 2.6.9 Stripping 13 2.7 Lift-off Techniques 15 2.7.1 Single layer lift-off 15 2.7.2 Double layer lift-off 16 2.7.3 Single layer lift-off with etching 17 3 Mesh optimization 18 3.1 Finger spacing for H-grid pattern 18 3.1.1 Shading loss 18 3.1.2 Emitter resistance 19 3.1.3 Finger Resistance 22 3.1.4 Total power loss 24 3.2 Finger spacing for hexagonal pattern 25 3.2.1 Shading loss hexagon 25 3.2.2 Finger resistance hexagon 27 3.2.3 Emitter resistance hexagon 29 3.2.4 Total power loss hexagon 29 3.3 Optimization of busbars 31 3.4 Sample design 34 4 Experimental procedure 37 4.1 Photolithography 38 4.2 Sputter deposition 38 4.3 Lift-off 39 4.4 Characterization 40 4.4.1 Scanning electron microscope (SEM) 40 4.4.2 Focused Ion Beam (FIB) 40 4.4.3 Energy-dispersive X-ray spectroscopy (EDS) 40 4.4.4 Atomic force microscope (AFM) 40 4.4.5 X-Ray diffraction (XRD) 41 4.4.6 Transmittance 41 4.4.7 Sheet resistance 41 4.4.8 Adhesion evaluation 42 5 Results and discussion 43 5.1 Molybdenum film properties 43 5.2 Lift-off process 53 5.3 Transmittance 57 5.4 Literature comparison 59 6 Conclusion 63 7 References 64

    Chen, Z.; Cotterell, B.; Wang, W.; Guenther, E.; Chua, S.-J.
    A mechanical assessment of flexible optoelectronic devices.
    Thin Solid Films 2001
    Tokio Nakada
    “Microstructural and diffusion properties of CIGS thin film solar cells fabricated using transparent conducting oxide back contacts”
    Thin Solid Films 480–481 (2005) 419 – 425
    M. P. De Jong, D. P. L. Simons, M. A. Reijme, L. J. van Ijzendoorn, A. W. Denier
    van der Gon, M. J. A. de Voigt, H. H. Brongersma, and R. W. Gymer,
    “Indiumdiffusion in model polymer light-emitting diodes”
    Synth. Met., vol. 110, p. 1,115 2000
    J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W.
    J. Feast, and F. Caciall
    “Indium-tin oxide treatments for single- and doublelayer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance”
    J. Appl.Phys., vol. 84, p. 6859, 1998
    H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey
    “Indium tin oxide thin films for organic light-emitting devices”
    Appl. Phys. Lett., vol. 74, p. 3444, 1999
    K. Lin, R. S. Kumar, C. Peng, S. Lu, C. Soo-Jin, and A. P. Burden
    “Au-ITO anode for efficient polymer light-emitting device operation”
    IEEE Photonics Technol. Lett., vol. 17, p. 543, 2005.
    Myung-Gyu Kang
    “Nanoimprinted transparent metal electrodes and their application in organic optoelectronic devices”
    A dissertation submitted in partial fulfillment of the requirements for the degree of
    Doctor of Philosophy (Electrical Engineering)
    University of Michigan 2009
    Jung-Yong Lee, Stephen T. Connor, Yi Cui, Peter Peumans
    “Solution-Processed Metal Nanowire Mesh Transparent Electrodes”
    Stanford University, Stanford, California 94305 (2007)
    V. Shelake, M.P. Bhole, D.S. Patil.V
    “Aluminium doped zinc oxide films as a transparent conducting electrode for organic light emitting devices”
    Optoelectronics and Advanced Materials – Rapid Vol. 2, No. 6, June 2008, p. 353 - 355
    Wu, Z. et al.
    “Transparent, Conductive Carbon Nanotube Films”
    Science 2004
    Myung-Gyu Kang, Hui Joon Parkb, Se Hyun Ahnc, L. Jay Guo
    “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells”
    Solar Energy Materials & Solar Cells 94 (2010) 1179–1184

    A. Michel, R. Ruprecht, M. Harmening, W. Bacher
    „Abformung von Mikrostrukturen auf prozessierten Wafern“
    KfK Bericht 5171, 1993
    Kilbock Lee, Jinho Ahn
    “Substrate effects on the transmittance of 1D metal grid transparent electrodes”
    Department of Material Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, South Korea
    Zhang Rui, Huo Zhenxuan, Jiao Xiangquan, JieYang, Du Bo, Zhong Hui, Shi Yu
    “Deposition of Molybdenum Thin Films on Flexible Polymer Substrates by Radio Frequency Molybdenum Sputtering “
    Journal of Nanoscience and Nanotechnology, Volume 16, Number 8, August 2016

    Press Release of the Fraunhofer ISE
    “New world record for solar cell efficiency at 46% – French-German cooperation confirms
    competitive advantage of European photovoltaic industry”
    01.12.2014
    https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html
    accessed 01.03.2017
    “Photovoltaics Report” of the Fraunhofer ISE
    17th of November 2016
    https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
    accessed 01.03.2017
    International Technology Roadmap for Photovoltaic 2015
    Seventh edition, October 2016
    Rudolf Müller
    “Grundlagen der Halbleiter-Elektronik. 5. Auflage. Springer-Verlag”
    Berlin 1987
    Josef Reiner
    “Grundlagen der Ophthalmologischen Optik page 72“
    2002
    J. Szlufcik, Sivoththaman, S., Nlis, J. F., Mertens, R. P., and Van-Overstraeten, R.
    “Low-cost industrial technologies of crystalline silicon solar cells”
    Proceedings-of-the-IEEE, vol. 85. pp. 711-730
    1997
    Paranthaman, M. Parans, Wong-Ng, Winnie, Bhattacharya, Raghu N
    “Semiconductor Materials for Solar Photovoltaic Cells”
    2016
    Nima Khoshsirat and Nurul Amziah Md Yunus
    “Copper-Indium-Gallium-diSelenide (CIGS) Nanocrystalline Bulk Semiconductor as the Absorber Layer and Its Current Technological Trend and Optimization”
    2016
    Anderson Janotti and Chris G Van de Walle
    “Fundamentals of zinc oxide as a semiconductor”
    Materials Department, University of California, Santa Barbara, USA
    22nd October 2009
    Dr. Wolfram Witte, Stefanie Spiering, Dr. Dimitrios Hariskos
    “Substitution of the CdS buffer layer in CIGS thin-film solar cells”
    3rd February 2014
    M. Gloeckler and J. R. Sites
    “Band-gap grading in Cu(In,Ga)Se2 solar cells “
    Department of Physics Colorado State University
    17th of February 2005
    Leonhard Stiny
    “Aktive elektronische Bauelemente: Aufbau, Struktur, Wirkungsweise, Eigenschaften und praktischer Einsatz diskreter und integrierter Halbleiter-Bauteile“
    Springer-Verlag
    2016
    Mark-Daniel Gerngroß, Julia Reverey
    “CIS/CIGS Based Thin-Film Solar Cells”
    Faculty of Engineering, University of Kiel
    Goetzberger, Adolf et.al.
    “Crystalline Silicon Solar Cells”
    1998
    Grant, John T, David Briggs
    “Surface Analysis by Auger and X-ray Photoelectron Spectroscopy”
    2003
    R. N. Hall
    “Electron-Hole Recombination in Germanium”
    Phys. Rev., vol. 87, p. 387, 1952
    Ruy S. Bonilla, Christian Reichel, Martin Hermle, Peter R. Wilshaw
    “Electric Field Effect Surface Passivation for Silicon Solar Cells”
    October 2013
    PV Education
    “Solar cell operation - Resistive effects”
    http://www.pveducation.org
    Christiana Honsberg and Stuart Bowden
    Accessed 13.03.2017
    “Photolithography Procedure”
    University of Louisville, Department of Micro/Nano Technology
    September 2013
    http://louisville.edu/micronano/files/documents/standard-operating-procedures/PhotolithographyProcess.pdf
    John T. Fourkas
    “Nanoscale Photolithography with Visible Light”
    Department of Chemistry and Biochemistry, Chemical Physics Program, Institute for Physical Science and Technology, Maryland NanoCenter, and Center for Nanophysics and Advanced Materials, University of Maryland, College Park
    J. Phys. Chem. Lett., 2010
    Dr. Lynn Fuller, Matt Filmer, Nicholas Liotta
    “Lift-Off Metal Patterning”
    Rochester Institute of Technology
    Microelectronic Engineering
    01.03.2012
    Jeremy Golden, Harris Miller, Dan Nawrocki, Jack Ross
    “Optimization of Bi-layer Lift-Off Resist Process”
    MicroChem Corp., 90 Oak St., Newton, MA
    Yanli Liu, Yufang Li, and Haibo Zeng
    “ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing”
    College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics
    21 December 2012
    Abd El-Hady B. Kashyout, Hesham M.A. Soliman, Hanaa Abou Gabal, Poussy Aly Ibrahim, Marwa Fathy
    “Preparation and characterization of DC sputtered molybdenum thin films”
    Alexandria Engineering Journal
    23 May 2010
    Y.G. Shen
    “Effect of deposition conditions on mechanical stresses and microstructure of sputter-deposited molybdenum and reactively sputter-deposited molybdenum nitride films”
    Materials Science and Engineering A359 (2003) 158 .167
    Li Wei, Zhao Yan-Min, Liu Xing-Jiang, Ao Jian-Ping, and Sun Yun
    “Thickness optimization of Mo films for Cu(InGa)Se2 solar cell applications”
    Chin. Phys. B Vol. 20, No. 6 (2011)
    J. L. Alleman, H. Althani, R. Noufi, H. Moutinho, M. M. Al-jassim, F. Hasoon
    “Dependence of the Characteristics of Mo Films on Sputter Conditions”
    NCPV program review meeting 2000
    Shih-Fan Chen, Shea-Jue Wang, Win-Der Lee, Ming-Hong Chen, Chao-Nan Wei, and Huy-Yun Y. Bor
    “Preparation and Characterization of Molybdenum Thin Films by Direct-Current Magnetron Sputtering”
    Atlas Journal of Materials Science 2 (1): 54–59, 2015
    Po-Chun Hsu, Shuang Wang, Hui Wu, Vijay K. Narasimhan, Desheng Kong, Hye Ryoung Lee & Yi Cui
    “Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires”
    Nature communications, 25 Sep 2013
    John H. Scofield, A. Duda, D. Albin, B.L. Ballardb, P.K. Predeckib
    “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”
    Thin Solid Films, Volume 260, Issue 1, 1 May 1995, Pages 26-31

    T. T. Bardin and J. G. Pronko
    “The effects of oxygen concentration in sputter-deposited molybdenum films”
    Thin Solid Films, 165 (1988) 243-247
    G. Gordillo, F. Mesa, C. Calderon
    “Electrical and Morphological Properties of Low Resistivity Mo thin Films Prepared by Magnetron Sputtering”
    Brazilian Journal of Physics, vol. 36, pp. 982, 2006
    J. S. Lin, R. C. Budhani and R. F. Bunshah
    “Effects of substrate bias on the resistivity and microstructure of molybdenum and molybdenum silicide films”
    Thin Solid Films, 153 (1987) 359-368
    K. Orgass, HW Schock, and JH Werner
    “Alternative back contact materials for thin film Cu(ln,Ga)Se2 solar cells”
    Thin Solid Films 431-432, 2003, pp. 387-391
    M.A. Martı́nez, C. Guillén
    “Effect of R.F.-sputtered Mo substrate on the microstructure of electrodeposited CuInSe2 thin films”
    Surface and Coatings Technology Volume 110, Issues 1–2, 10 November 1998, Pages 62–67
    S.G. Malhotra, Z.U. Rek, S.M. Yalisove, J.C. Bilello. J. Vac
    “Strain gradients and normal stresses in textured Mo thin films”
    Sci. Technol. A, 15, 345 (1997)
    Majid Khan, Mohammad Islam
    “Deposition and characterization of molybdenum thin films using DC-plasma magnetron sputtering”
    Semiconductors, 2013 - Springer
    K. Ravichandran, P. Ravikumar, B. Sakthivel
    “Fabrication of protective over layer for enhanced thermal stability of zinc oxide based TCO films”
    Applied Surface Science, Volume 287, 15 December 2013, Pages 323–328

    Ben Minnaert and Peter Veelaert
    “A Proposal for Typical Artificial Light Sources for the Characterization of Indoor Photovoltaic Applications”
    Energies 2014, 7(3), 1500-1516; doi:10.3390/en7031500

    M. Rubin
    “Optical Properties of Soda Lime Silica Glasses”
    Solar Energy Materials 12 (1985) 275-288
    Tiziana Spano, Rosalinda Inguanta, Patrizia Livreri, Salvatore Piazza, Carmelo Sunseri
    “Electrochemical deposition of CIGS on electropolished Mo”
    Fueling the future: advances in cience and technologies for energy generation, transmission and storage
    01.02.2012
    Bulent Basol
    “Commercialization of High Efficiency Low Cost CIGS Technology Based on Electroplating”
    Final Technical Progress Report September 28, 2007 – June 30, 2009
    Chuan Fei Guo and Zhifeng Ren
    “Flexible transparent conductors based on metal nanowire networks”
    Materials Today, Volume 18, Number 3, April 2015
    Javier Garcia-Martinez
    “Nanotechnology for the Energy Challenge”
    John Wiley & Sons, 20.05.2013
    MA Contreras
    "Texture Manipulation of CulnSe2 Thin Films"
    Thin Solid Films 361-362,2000, pp. 167-171.
    Dominik Rudmann,
    "Effect of Sodium on Growth and Properties of Cu(ln,Ga)Se2 Thin Films and Solar Cell"
    Ph.D thesis No. 15576, ETH
    u-Heon Yoon, Kwan-Hee Yoon, Jong-Keun Kim, Won-Mok Kim, Jong-Keuk Park, Taek Sung Lee, Young-Joon Baik, Tae-Yeon Seong, and Jeung-hyun Jeong
    “Effect of the Mo back contact microstructure on the preferred
    Orientation of cigs thin films”

    T. Hino, Y. Makabe, Y. Hirohata and T. Yamashina
    “Surface roughness of Mo films prepared by magnetron sputtering”
    Thin Solid Films, 229 (1993) 201-206
    Sergio B. Sepulveda-Mora and Sylvain G. Cloutier
    “Figures of Merit for High-Performance Transparent Electrodes Using Dip-Coated Silver Nanowire Networks”
    21 August 2012
    Jorik van de Groep, Pierpaolo Spinelli and Albert Polman
    „Transparent Conducting Silver Nanowire Networks”
    Nano Lett. 2012, 12, 3138-3144
    Sukanta De, Thomas M. Higgins, Philip E. Lyons, Evelyn M. Doherty, Peter N. Nirmalraj, Werner J. Blau, John J. Boland and Jonathan N. Coleman
    “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios”
    June 24, 2009
    G. Haacke
    “New figure of merit for transparent conductors “
    29 March 1976
    U.Gan opadhyay, H.Saha, S.K.Dutta, Kyunghae Kim, K.Chakrabarty and Junsin Yi
    “front grid design for plated contact solar cells”

    無法下載圖示 全文公開日期 2022/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE