簡易檢索 / 詳目顯示

研究生: 吳岳融
Yueh-Jung Wu
論文名稱: 層狀混晶硫硒化鉬之晶體成長與光學特性研究
Crystal Growth and Characterization of Mixed-layered Crystals Mo(SxSe1-x)2
指導教授: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
口試委員: 程光蛟
Kwong-Kau Tiong
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 67
中文關鍵詞: 二硒化鉬二硫化鉬硫硒化鉬X光繞射拉曼量測調製光譜
外文關鍵詞: Mo(SxSe1-x)2, X-ray diffraction, Raman spectrum, Modulation spectroscopy, MoS2, MoSe2
相關次數: 點閱:307下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文是利用化學氣相傳導法 (Chemical Vapor Transport, CVT) 成長層狀半導體Mo(SxSe1-x)2,其傳導劑為碘 (I2)。從X光繞射實驗可以確定此系列單晶之成分組成及晶體結構,並可計算其晶格常數,發現其晶格常數a為線性變化,但是晶格常數c卻為拋物線變化,而c/a會有一個最大值出現在MoS0.6Se1.4。
      接著從拉曼散射實驗 (Raman Scattering) 觀察其晶格振動和聲子訊號,並利用MREI模型 (modified random element displacement model) 計算其A1g和E2g振動模態的力學常數,了解此系列樣品的雙模態特性 (two-mode behavior) 。
      最後從壓電調制反射光譜和一次微分型式的勞倫茲線形公式,可得其能隙附近的兩個激子躍遷訊號與半高寬。發現此系列樣品隨著硫成分變化,其激子訊號的變化是平滑的,這可能是因為硫與硒之間的化學性質是相近的。接著,觀察溫度變化對樣品的影響,並利用Varshni與Bose-Einstein關係式來探究溫度對此系列材料激子躍遷訊號及半高寬的變化。


    We used chemical vapor transport (CVT) to grow Mo(SxSe1-x)2 mixed-layered crystals with iodine (I2) as a transport agent. By X-ray diffraction measurement, in the system Mo(SxSe1-x)2, a continuous series all have the same 2H two-layer hexagonal structure (space group P63/mmc) . The evolution of lattice parameter of the mixed-layered system will be reported in this thesis. We find the a parameter and unit-cell volume are both nearly linear with x. The c parameter is parabolic and the c/a ratio shows a clear maximum at x=0.3, correponding to MoS0.6Se1.4.
    Lattice vibrations of Mo(SxSe1-x)2 are also measured by Raman spectroscopy in this thesis. The values of force constants can be calculated by MREI-model. The model successfully confirms the two-mode behavior exhibited by the series and the calculated values agree very well with experimentally observed values.
    The temperature dependence of the spectral features in the vicinity of the direct band edge of Mo(SxSe1-x)2 is measured in the temperature range of 25-295K by using piezoreflectance (PzR) . From a detailed line shape fit of the PzR spectra, the temperature dependences of energies and broadening parameters of the A1 and B excitons are determined accurately. The parameters that describe the temperature variation of transition energies and broadening parameter of the excitonic transitions are evaluated and discussed.

    中文摘要I 英文摘要II 誌謝III 目錄IV 圖索引VI 表索引VIII 第一章 緒論1 第二章 晶體成長3 2.1 晶體成長方法簡介3 2.2 晶體成長設備介紹5 2.2.1 真空系統5 2.2.2 長晶反應系統5 2.3 晶體成長6 第三章 量測技術9 3.1 X光繞射原理9 3.2 拉曼量測14 3.3 調製光譜20 3.3.1 簡介20 3.3.2 壓電調制反射光譜22 3.3.3 系統配置22 第四章 結果與討論27 4.1 X光繞射量測結果與討論27 4.2 拉曼散射譜線結果與討論34 4.3 PzR量測結果與討論49 第五章 結論63 參考文獻65

    [1]J. A. Wilson and A. D. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Adv. Phys., vol. 18, pp. 193-335, 1969.
    [2]S. J. Li, J. C. Bernede, J. Pouzet, and M. Jamali, "WS2 thin films prepared by solid state reaction (induced by annealing) between the constituents in thin film form," J. Phys.: Condens. Matter, vol. 8, p. 2291, 1996.
    [3]P. Grange, "Catalytic Hydrodesulfurization," Cat. Rev. - Sci. Eng., vol. 21, pp. 135-181, 1980.
    [4]P. G. Moses, B. Hinnemann, H. Topsoe, and J. K. Norskov, "The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study," J. Catal., vol. 248, pp. 188-203, 2007.
    [5]E. Fortin and F. Raga, "Excitons in molybdenum disulphide," Phys. Rev. B, vol. 11, pp. 905-912, 1975.
    [6]W. Kautek, H. Gerischer, and H. Tributsch, "The Role of Carrier Diffusion and Indirect Optical Transitions in the Photoelectrochemical Behavior of Layer Type d‐Band Semiconductors," J. Electrochem. Soc., vol. 127, pp. 2471-2478, 1980.
    [7]K. K. Kam and B. A. Parkinson, "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides," J. Phys. Chem., vol. 86, pp. 463-467, 1982.
    [8]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat Nanotechnol, vol. 6, pp. 147-150, 2011.
    [9]J. K. Ellis, M. J. Lucero, and G. E. Scuseria, "The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory," Appl. Phys. Lett., vol. 99, 2011.
    [10]J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, et al., "2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers," Adv. Mater., vol. 26, pp. 1399-1404, 2014.
    [11]H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, et al., "Growth of Alloy MoS2xSe2(1–x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties," JACS, vol. 136, pp. 3756-3759, 2014.
    [12]H.-P. Komsa and A. V. Krasheninnikov, "Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties," J. Phys. Chem. Lett., vol. 3, pp. 3652-3656, 2012.
    [13]Y. Gong, Z. Liu, A. R. Lupini, G. Shi, J. Lin, S. Najmaei, et al., "Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide," Nano Lett., vol. 14, pp. 442-449, 2013.
    [14]Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, et al., "Semiconductors: Growth of Large-Area 2D MoS2(1-x)Se2x Semiconductor Alloys," Adv. Mater., vol. 26, pp. 2763-2763, 2014.
    [15] H. Schäfer, Chemical transport reactions. New York,: Academic Press, 1964.
    [16]A. Beiser, Concepts of modern physics: McGraw-Hill, 1987.
    [17]梁映秋 and 趙文運, 分子振動和振動光谱: 北京大學出版社, 1990.
    [18]B. O. Seraphin, R. B. Hess, and N. Bottka, "Field Effect of the Reflectivity in Germanium," J. Appl. Phys., vol. 36, pp. 2242-2250, 1965.
    [19]F. H. Pollak and H. Shen, "Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices," Mater. Sci. Eng., R, vol. 10, pp. 275-374, 1993.
    [20]H. Mathieu, J. Allegre, and B. Gil, "Piezomodulation spectroscopy: A powerful investigation tool of heterostructures," Phys. Rev. B, vol. 43, pp. 2218-2227, 1991.
    [21]P. Y. Yu and M. Cardona, Fundamentals of semiconductors : physics and materials properties, 4th ed. Berlin ; New York: Springer, 2010.
    [22]L. F. Schneemeyer and M. J. Sienko, "Crystal data for mixed-anion molybdenum dichalcogenides," lnorg. Chem., vol. 19, pp. 789-791, 1980.
    [23]P. B. James and M. T. Lavik, "The crystal structure of MoSe2," Acta Cryst., vol. 16, p. 1183, 1963.
    [24]J. C. Wildervanck and F. Jellinek, "Preparation and Crystallinity of Molybdenum and Tungsten Sulfides," Z. Anorg. Allg. Chem., vol. 328, pp. 309-318, 1964.
    [25]J. L. Verble and T. J. Wieting, "Lattice Mode Degeneracy in MoS2 and Other Layer Compounds," Phys. Rev. Lett., vol. 25, pp. 362-365, 1970.
    [26]T. J. Wieting and J. L. Verble, "Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal MoS2," Phys. Rev. B, vol. 3, pp. 4286-4292, 1971.
    [27]T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, and E. Matsuura, "Raman Scattering and Infrared Reflectance in 2H-MoSe2," J. Phys. Soc. Jpn., vol. 49, pp. 1069-1077, 1980.
    [28]S. Sugai and T. Ueda, "High-pressure Raman spectroscopy in the layered materials 2H-MoS2, 2H-MoSe2, and 2H-MoTe2," Phys. Rev. B, vol. 26, pp. 6554-6558, 1982.
    [29]H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, et al., "From Bulk to Monolayer MoS2: Evolution of Raman Scattering," Adv. Funct. Mater., vol. 22, pp. 1385-1390, 2012.
    [30]Chanchal and A. K. Garg, "MREI-model calculations of optical phonons in layered mixed crystals of 2H-polytype of the series SnS2−xSex (0⩽x⩽2) ," Physica B, vol. 383, pp. 188-193, 2006.
    [31]P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, et al., "Photoluminescence Emission and Raman Response of MoS2, MoSe2, and WSe2 Nanolayers," in CLEO: 2013, San Jose, California, 2013, p. QTu1D.1.
    [32]A. R. Beal, J. C. Knights, and W. Y. Liang, "Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination," J. Phys. C: Solid State Phys., vol. 5, p. 3540, 1972.
    [33]A. R. Beal and W. Y. Liang, "Excitons in 2H-WSe2 and 3R-WS2," J. Phys. C: Solid State Phys., vol. 9, p. 2459, 1976.
    [34]J. A. Van Vechten and T. K. Bergstresser, "Electronic Structures of Semiconductor Alloys," Phys. Rev. B, vol. 1, pp. 3351-3358, 1970.
    [35]Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica, vol. 34, pp. 149-154, 1967.
    [36]P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, "Interband critical points of GaAs and their temperature dependence," Phys. Rev. B, vol. 35, pp. 9174-9189, 1987.
    [37]L. Malikova, W. Krystek, F. H. Pollak, N. Dai, A. Cavus, and M. C. Tamargo, "Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se," Phys. Rev. B, vol. 54, pp. 1819-1824, 1996.
    [38]C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao, and K. K. Tiong, "Temperature dependence of energies and broadening parameters of the band-edge excitons of Mo1-xWxS2 single crystals," J. Phys.: Condens. Matter, vol. 10, p. 9317, 1998.
    [39]C. H. Ho, Y. S. Huang, P. C. Liao, and K. K. Tiong, "Piezoreflectance study of band-edge excitons of ReS2-xSex single crystals," Phys. Rev. B, vol. 58, pp. 12575-12578, 1998.
    [40]P. C. Yen, H. P. Hsu, Y. T. Liu, Y. S. Huang, and K. K. Tiong, "Temperature dependences of energies and broadening parameters of the band-edge excitons of Re-doped WS2 and 2H-WS2 single crystals," J. Phys.: Condens. Matter, vol. 16, p. 6995, 2004.

    QR CODE