簡易檢索 / 詳目顯示

研究生: 張凱彥
kai-yan Zhang
論文名稱: GaN/InGaN多重量子井之太陽電池模擬研究
Study on GaN/InGaN MQW Solar Cell by simulation
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 趙良君
Liang-chiun Chao
葉文昌
Wen-chang Yeh
蘇忠傑
Jung-chieh Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 53
中文關鍵詞: 太陽電池氮化鎵氮化銦鎵
外文關鍵詞: Solar Cell, GaN, InGaN
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

InxGa1-xN系統之能隙可以由3.42eV (GaN)調變至0.7eV (InN),其能隙幾乎涵蓋了地球表面上收到的太陽光的頻譜,所以選擇氮化鎵系統半導體材料進行太陽電池之研究。
本論文主要將以模擬的方式,來分析探討不同設計或製程參數對InGaN多重量子井結構的太陽電池特性的影響。模擬使用的軟體為美國SILVACO公司開發的套裝軟體ATLAS。本文將首先對III-V族氮化物半導體材料作一簡短回顧,並對此一材料相關重要參數及物理模型做一整理。
在模擬中,我們照射固定強度的光並且設計了7種模擬,包括(1)多重量子井結構與p-i-n結構之太陽電池比較,(2)ITO透明導電層對太陽電池的影響,(3)p-GaN厚度對太陽電池的影響,(4)多重量子井層中不同銦含量對太陽電池的影響,(5)串聯電阻對太陽電池影響之分析(6)並聯電阻對太陽電池影響之分析,(7)蕭基接觸(Schottky contact)對太陽電池影響之分析。最後我們提出實驗與模擬的比較,得到相符的結果。


InxGa1-xN material system offers a very wide bandgap energy range staring from 0.7eV to 3.42eV continuously that almost covers terrestrial solar spectrum. So we select III-nitride semiconductor to do solar cell research.
  In this thesis, we studied the influence of different design or processing on the performance of InGaN MQW solar cell by using commercial simulation program ATLAS of Silvaco Incorporation. First, we briefly introduce III-nitride semiconductor material, including some important physic models and characteristic parameters.
  In simulation, assuming fixed standard AM1.5 solar light illumination, seven simulation experiments were carried out that included: (1)MQW structure versus p-i-n structure, (2)with and without ITO transparent conductive layer, (3)p-GaN layer thickness, (4)different In composition in InGaN quantum wells , (5) series resistance, (6) shunt resistance and (7)Schottky contact. Finally, we compared simulation with experimental results. They were consistent.

摘要 I 致謝 III 目錄 IV 圖列 VI 表列 VII 第一章 緒論 1.1 研究背景與動機 1 1.1.1研究背景 1 1.1.2研究動機 1 1.2 論文架構 3 第二章 文獻回顧 2.1 氮化物系統材料特性簡介 4 2.1.1氮化物系統晶格結構 4 2.1.2能帶間隙 5 2.2 太陽電池 6 2.2.1太陽光譜 6 2.2.2太陽工作原理 8 2.2.3太陽電池等效電路模型 9 2.2.4太陽電池之電流電壓特性與轉換效率 11 第三章 模擬模組與模型建立 3.1 模擬軟體簡介 14 3.2 模組與物理模型 16 3.2.1 BLAZE模組 16 3.2.2 復合模型 16 3.2.2.1 發光性復合模型(Radiative recombination model) 17 3.2.2.2 非發光性復合模型(Nonradiative recombination model) 18 3.2.2.3 歐傑復合模型(Auger recombination model) 19 3.2.2.4 總結 20 3.2.3 漂移-擴散傳導模型(Drift-diffusion transport model) 21 3.2.4 Luminous模組 23 3.2.4.1 入射光的定義 23 3.2.4.2 光在介質中的計算方法 24 3.2.4.3 半導體對光吸收的基本轉換 26 3.3 總結 28 第四章 數值模擬與分析 4.1 簡介 29 4.2 基本元件結構 29 4.3 模擬與結果分析 31 4.3.1 多重量子井結構與p-i-n結構之太陽電池比較 31 4.3.2 具ITO透明導電層對太陽電池的影響 33 4.3.3 p-GaN厚度對太陽電池的影響 35 4.3.4 MQW中不同銦含量對太陽電池的影響 36 4.3.5 模擬串聯電阻之分析38 4.3.6 模擬並聯電阻之分析 40 4.3.7 模擬蕭基(Schottky contact)接觸之分析 43 4.4 模擬結果與實驗比較 44 第五章 結論與未來展望 5.1 結論 49 5.2 未來展望 51 參考文獻

[1]D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p-n
Junction Photocell for Converting Solar Radiation into Electrical
Power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[2]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager Iii, E. E. Haller, H.
Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, "Unusual properties of
the fundamental band gap of InN," Applied Physics Letters, vol. 80,
pp. 3967-3969, 2002.
[3]H. P. M. a. J. J. Tietjen, Applied Physics Letters, vol. 15, 1969.
[4]M. S. S. a. M. A. Khan, Mater. Res. Bull, vol. 22, p. 44, 1997.
[5]J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager Iii, S. X. Li,
E. E. Haller, H. Lu, and W. J. Schaff, "Temperature dependence of
the fundamental band gap of InN," Journal of Applied Physics, vol.
94, pp. 4457-4460, 2003.
[6]W. Walukiewicz, S. X. Li, J. Wu, K. M. Yu, J. W. Ager, E. E. Haller
, H. Lu, and W. J. Schaff, "Optical properties and electronic
structure of InN and In-rich group III-nitride alloys," Journal of
Crystal Growth, vol. 269, pp. 119-127, 2004.
[7]M. A. Green, "Solar Cells Opreating Principles, Technology, and
system Application," University of New South Wakes Press, 1982.
[8]S. M. Sze, Semiconductor Devices, Physics and Technology John
Wiely&Sons, 2002.
[9]L. D.Partain, Solar cell and Their Applications: Wiley, 1995.
[10]S. I. Inc, ATLAS User's Manual: Santa Clara, 2007.
[11]J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, J. H. C. Casey,
B. P. Keller, U. K. Mishra, and S. P. DenBaars, "Absorption
coefficient, energy gap, exciton binding energy, and recombination
lifetime of GaN obtained from transmission measurements," Applied
Physics Letters, vol. 71, pp. 2572-2574, 1997.
[12]R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, "Phase
separation in InGaN thick films and formation of InGaN/GaN double
heterostructures in the entire alloy composition," Applied Physics
Letters, vol. 70, pp. 1089-1091, 1997.
[13]L. Gupta, A. Mansingh, and P. K. Srivastava, "Band gap narrowing and
the band structure of tin-doped indium oxide films," Thin Solid
Films, vol. 176, pp. 33-44, 1989.
[14]J.-C. Su, "Optical monitoring of laser induced interfacial reaction
Au/Si," UNIVERSITY OF SOUTHERN CALIFORNIA 1987.
[15]黃鶴, "氮化鎵發光二極體與太體化的可行性研究," 國立台灣科技大學, 2009.
[16]O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, "Design and
characterization of GaN/InGaN solar cells," Applied Physics Letters,
vol. 91, pp. 132117-3, 2007.

無法下載圖示 全文公開日期 2014/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE