簡易檢索 / 詳目顯示

研究生: 李學銓
Hsueh-Chuan lee
論文名稱: 以非晶矽氧膜層作為矽晶異質接合鈍化層之程序探討
Surface passivation of silicon heterojunction using hydrogenated amorphous silicon oxide layers
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
葉秉慧
Ping-Hui Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 125
中文關鍵詞: 鈍化表面復合速率異質接合開路電壓太陽能電池
外文關鍵詞: passivation, surface recombination velocity, heterojunction, open circuit voltage, solar cell
相關次數: 點閱:329下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異質接合太陽電池的高開路電壓特性取決於是否有良好的鈍化層,本論文研究以射頻電漿輔助化學氣相沉積系統(RF-PECVD)製備本質氫化非晶氧化矽薄膜用於鈍化n型單晶矽基材,研究重點為探討本質氫化非晶氧化矽的成長條件,特別是氧組成及其鍵結特性與其在矽晶成長鈍化效果及其應用於異質接合太陽電池的元件特性關係。
    在氫化非晶矽部份,主要探討氧原子源的二氧化碳流量比對成長非晶矽薄膜鈍化矽晶片的效應。藉由沉積雙面30nm厚的非晶矽薄膜鈍化矽晶片後得到最佳的有效載子生命週期高達2360μs,暗示開路電壓740mV。其中二氧化碳流量比由0.001提高到0.005時,薄膜的光學能隙由1.72eV增加到1.85eV,而對於矽晶片的鈍化效果指標參數-暗示開路電壓則由608mV躍升到740mV。最後,利用多重腔體連結式PECVD裝置製作矽晶異質接合太陽能電池,以本質氫化非晶氧化矽薄膜作為鈍化層獲得元件最佳的開路電壓為707mV,光電轉換效率達12.19%。


    In this paper, we studied the passivation quality of intrinsic amorphous silicon sub-oxides (a-SiOx:H) thin layers deposited on n-type FZ Si wafers. Conventional RF plasma enhanced chemical vapor deposition (RF-PECVD) system were applied to deposit a-SiOx:H using SiH4, CO2, and H2 as the reactant gases. We investigated to effects of passivation quality of c-Si wafers sandwiched by 30-nm thick a-SiOx:H layers deposited at various CO2 partial pressures. We found that by increasing the CO2 concentration from 0.1 to 0.5% the corresponding effective carrier lifetime of Si wafers increase from 1100 to 2360s, and the implied open circuit voltage increase from 608 to 740 mV. Optical analysis of the a-SiOx:H layers showed that the addition of CO2 concentration from 0.1 to 0.5% increase the optical band gap of a-SiOx:H layers from 1.72 to 1.85eV. The application of the a-SiOx:H layer with 1.85eV band gap to the fabrication of Si heterojunction solar cells showed a high cell Voc of 707mV.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VIII 表索引 XV 第一章 緒論 1 1.1 前言 1 1.2 非晶/單晶異質接合太陽能電池 3 1.3 異質接合太陽能電池發電原理 6 1.4 載子生命週期 12 1.4.1產生與復合 12 1.4.2塊材復合 15 1.4.3表面復合 17 1.5 研究動機與目的 27 第二章 實驗方法與步驟 29 2.1 實驗裝置 29 2.1.1 使用rf-PECVD系統成長本質層、p型及n型非晶矽薄膜 29 2.1.2 使用磁控濺鍍系統成長透明導電玻璃薄膜 34 2.2 實驗程序 36 2.2.1 矽晶基材之清洗 36 2.2.2 玻璃基材的清洗 38 2.2.3 異質接合太陽能電池之製作程序 39 2.3 分析儀器 40 2.3.1表面形態輪廓儀 (surface profiler) 40 2.3.2 反射式高能電子繞射 (reflection high energy electron diffraction, RHEED) 40 2.3.3 紫外光/可見光光譜儀 (UV/VIS) 42 2.3.4 場發射掃瞄式電子顯微鏡 (Field emission scanning electron microscope, FE-SEM) 45 2.3.5 X射線光電子能譜化學分析儀 (X-ray photoelectron spectroscopy) 46 2.3.6 載子生命週期量測儀 (Lifetime tester) 47 2.3.7 太陽光模擬器 (Solar simulator) 51 2.3.8 分光效率量測儀(Incident Photon-to-Current Efficiency, IPCE) 54 第三章 結果與討論 55 3.1 本質氫化非晶氧化矽(a-SiOx:H)薄膜製備 55 3.1.1 不同反應壓力下沉積本質氫化非晶氧化矽薄膜 56 3.1.2 不同二氧化碳流量比沉積本質氫化非晶氧化矽薄膜 60 3.1.3 不同基材溫度下沉積氫化非晶氧化矽薄膜 70 3.1.4 改變氫化非晶氧化矽薄膜厚度對矽晶片的有效載子生命週期之影響 74 3.2 本質氫化非晶氧化矽薄膜與本質氫化非晶矽薄膜在晶片鈍化效果的比較 78 3.2.1 本質氫化非晶矽(a-Si:H)薄膜製備 78 3.2.2本質氫化非晶氧化矽薄膜與本質氫化非晶矽薄膜在晶片鈍化效應的比較 83 3.3 異質接合太陽能電池製作 88 3.3.1 以本質氫化非晶氧化矽薄膜作為異質接合太陽能電池鈍化層 88 3.3.2 以本質氫化非晶矽薄膜作為異質接合太陽能電池鈍化層 96 第四章 結論 100 第五章 參考文獻 102 作者簡介 107

    1. http://sharp-world.com/corporate/eco/special/feature/index.html
    2. T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, “Development status of high-efficiency HIT solar cells”, Solar Energy Materials & Solar Cells 95 (2011) 18–21
    3. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials & Solar Cells 93 (2009) 670–673
    4. E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, (2009) 1690
    5. D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, T. K., M. Taguchi, H. Sakata, E. Maruyama,” High-performance HIT solar cells for thinner silicon wafers”, Photovoltaic Specialists Conference (PVSC), June 2010, 003137 - 003140
    6. S. D. Wolf, A. Descoeudres, Z. C. Holman, C. Ballif,” High-efficiency Silicon Heterojunction Solar Cells: A Review”, Green, Vol. 2 (2012) 7–24
    7. H. C. Neitzert, W. R. Fahrner,” History of the amorphous silicon on crystalline silicon heterojunction solar cell”, Rev. Roumaine Phys. 13, 317 (1968)
    8. M. Taguchi¬, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, O. Oota,” HITM Cells-High-Effciency Crystalline Si Cells with Novel Structure”, Prog. Photovolt: Res. Appl. 2000; 8: 503-513
    9. M. Tanaka, M. Taguchi, T. Matsuyma, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano,”Development of New a-Si/c-Si Heterojunction Solar cell:ACJ-HIT”,Jpn. J. Appl. Phys. Vol. 31 (1992) pp. 3518-3522
    10. C. V. Sanchez,”Silicon heterojunction solar cells obtained by Hot-Wire CVD”, Ph.D. Thesis, University Politecnica de Catalunya (2008)
    11. T.H. Wang, M.R. Page, E. Iwaniczko, D.H. Levi, Y. Yan, H.M. Branz, Q. Wang,” Toward Better Understanding and Improved Performance of Silicon Heterojunction Solar Cells”,14th Workshop on Crystalline Silicon Solar Cells and Modules, Winter Park, Colorado (2004)
    12. L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt,” Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization”, Solar Energy Materials & Solar Cells 93 (2009) 905–910
    13. D. L. Meier, M. R. Page, E. Iwaniczko, Y. Xu, Q. Wang, H. M. Branz,” Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007
    14. P. J. Rostan,” a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base”, Institut f‥ur Physikalische Elektronik der Universit‥at Stuttgart 2010
    15. A. G. Aberle,” Surface Passivation of Crystalline Silicon Solar Cells:A Review” ,Prog. Photovolt: Res. Appl. 2000; 8: 473-487
    16. Nelson, J., The Physic of solar cell, Imperial College Press.
    17. S. Y. Lien, D. S. Wuu,” Simulation and Fabrication of Heterojunction Silicon Solar Cells from Numerical Computer and Hot-Wire CVD”, Prog. Photovolt: Res. Appl.(2009)
    18. L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt,” Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization”, Solar Energy Materials & Solar Cells 93 (2009) 905–910
    19. Y. Yamamoto, Y. Uraoka, T. Fuyuki,” Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single-Crystalline Silicon Thin-Film Solar Cells”, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 5135–5139

    20. J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee , A. Yamada, M. Konagai,” Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics Vol. 46, No. 6A, 2007, pp. 3296–3300
    21. M.R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L. Roybal, H. M. Branz, T.H. Wang,” Well passivation a-Si:H back contacts for double-heterojunction silicon solar cell”, Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, 1485 (2006).
    22. 施敏,半導體元件物理與製作技術,第二版,國立交通大學出版社,新竹市 (2002).
    23. J. C. Vickerman, “Surface Analysis—The Principle Techniques”, Wiley: New York, (1997) pp.60.
    24. Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano,”Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films”, Japanese Journal of Applied Physics Vol. 30, No. 5,May, 1991, pp. 1008–1014.
    25. Sinton Consulting, “WCT-120 Photoconductance Lifetime Tester and optional Suns-VOC Stage User Manual”, www.sintonconsulting.com
    26. R. A. Sinton, A. Cuevas,” Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Appl. Phys. Lett., Vol. 69, No. 17, 21 October 1996.
    27. D. Macdonald, R. A. Sinton, A. Cuevas,” On the use of a bias-light correction for trapping effects in photoconductance-based lifetime measurements of silicon”, Journal of Applied Physics volume 89, No. 5, 1 MARCH 2001.
    28. H. Fujiwara, T. Kaneko, M. Kondo,” Application of hydrogenated amorphous silicon oxide layers to c –Si heterojunction solar cells”, Applied Physics Letters 91,133508 2007.
    29. L. Fesquet, S. Olibet, E. V. Sauvain, A. Shah, C. Ballif,”High Quality Surface Passivation and Heterojunction Fabrication by VHF-PECVD Deposition of Amorphous Silicon on Crystalline Si:Theory and Experiments”, 22nd European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 1678 (2007).
    30. H. Fujiwara, M. Kondo, A. Matsuda,” Microcrystalline silicon nucleation sites in the sub-surface of hydrogenated amorphous silicon”, Surface Science 497, 2002 , 333–340.
    31. T. Mueller, S. Schwertheim, W. R. Fahrner,” Crystalline silicon surface passivation by high-frequency plasma-enhanced chemical-vapor-deposited nanocomposite silicon suboxides for solar cell applications”, Journal of Applied Physics 107, 014504 (2010).
    32. H. Fujiwara, T. Kaneko, M. Kondo,” Optimization of interface structures in crystalline silicon heterojunction solar cells”, Solar Energy Materials & Solar Cells 93 (2009) 725–728.
    33. Ikuta, K., et al., Nucleation and Coalescence in Hydrogenated Amorphous Silicon Studied by Scanning Tunnelin.
    34. H. Fujiwaraa, M. Kondo,” Real-time monitoring and process control in amorphous/crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy”, Applied Physics Letters 86,032112 (2005).
    35. Y. Asano, D. S. Baer, R. K. Hanson, “Subatrate Temperature Dependence of SiH Concentration Silane Plasmas for Amorphous Silicon Film Deposition”, Journal of Non-Crystalline Solids 94 (1987) 5-10.
    36. J. Robertson,” Growth mechanism of hydrogenated amorphous silicon”, Journal of Non-Crystalline Solids 266-269 (2000) 79-83.
    37. D.J. Eaglesham, H.J. Gossmann, M. Cerullo,”Limiting Thickness hepi for Epitaxial Crowth and Room-Temperature Si Growth on Si(100)”, Physical review letters,Volume 65 ,No.10, 3 Sep. 1990.
    38. D. Thibaut, D. V. Sylvaina, S. Florent, D. Djicknoumb, M. Delfina, G. Farret, Marie , K. J. Paul, R. P. Jeana,” Development of Interdigitated Back Contact Silicon Heterojunction (IBC Si-HJ) Solar Cells”,Energy Procedia 8 (2011) 294-300.

    QR CODE