簡易檢索 / 詳目顯示

研究生: 蔡宜萍
I-Ping Tsai
論文名稱: 表面披覆層對量子點敏化太陽能電池效應之研究
Effect of surface passivation on the effenciency of quantum dot-sensitized solar cells
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江佳穎
Chia-Ying Chiang
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 量子點敏化太陽能電池鈍化層晶格失配度電子電動再結合連續離子吸附與反應能隙
外文關鍵詞: Quantum dots-sensitized solar cell, passivation layer, lattice mismatch, Charge recombination, successive ionic layer adsorption and reaction, Energy bandgap
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子點敏化太陽能電池中,常有因量子點半導體元件在空氣中暴露時容易氧化而不利於元件之效能,如何改善此缺陷是量子點電池中重要的議題之一。
    本實驗針對此原因在光電極外再包覆 ZnS、ZnSe 及 ZnS/ZnSe 寬能系的鈍化層材料使其與外界隔絕,用以減少激發電子被電解液捕獲而發生電荷重組現象。其中雖然 ZnSe 與材料間的晶格失配度優於 ZnS,但是因 ZnS 能隙大於 ZnSe,所以 ZnS 鈍化層的最佳效能為 8.40 %優於 ZnSe 的 7.85 %。為了結合兩種鈍化層的優點,將兩種鈍化層疊加,但是因為其材料之間的晶格失配度,所以我們選用先包覆 ZnSe 再包覆 ZnS 作為雙層鈍化層之條件,其效率可達 9.15 %。
    為了簡化浸泡製程,我們使用 MnZnSe 量子點做為鈍化層,悉知這是第一次使用量子點做為鈍化層之應用。量子點為鈍化層應用之優點有層積方式簡單、尺寸較為均一,而且受激發時有機會提供更多的電子。根據結果,發現其效率可提升至 7.45 %。


    In quantum dot sensitized solar cells, it is often unfavorable to oxidize quantum
    dot semiconductor devices when exposed to air, which is one of the important issues in quantum dot cells.
    For this reason, the passivation layer materials of ZnS, ZnSe and ZnS/ZnSe wide
    energy systems are coated on the outside of the photoelectrode to isolate them from the surroundings. It is used to reduce the charge recombination phenomenon in which
    excited electrons are trapped by the electrolyte. Although the lattice mismatch between ZnSe and the material is better than ZnS and the material, the optimum efficiency of ZnS passivation layer is 8.40% better than 7.85% of ZnSe because ZnS energy gap is larger than ZnSe. In order to combine the advantages of the two passivation layers, the two passivation layers are superimposed. Because of the lattice mismatch between the materials, we choose to coat ZnSe and then coat ZnS as the double passivation layer, and its efficiency can reach 9.15%.
    In order to simplify the immersion process, we use MnZnSe quantum dots as the
    passivation layer. It is known that this is the first time that quantum dots have been used as a passivation layer. The advantages of quantum dots as a passivation layer are that the layering method is simple, the size is relatively uniform, and there is an opportunity to provide more electrons when excited. According to the results, it was found that its performance can be improved to 7.45%.

    致謝 I 摘要 II Abstract III 總目錄 IV 表目錄 VII 圖目錄 VIII 一、緒論 1 1.1 前言 1 1.2 太陽能電池發展 2 1.2.1 第一代---矽晶太陽能電池 3 1.2.2 第二代---薄膜型太陽能電池 5 1.2.3 第三代---敏化太陽能電池 5 1.3 研究動機 6 二、文獻回顧 7 2.1 奈米材料 7 2.2 量子點 9 2.2.1 量子侷限效應 Quantum Confinement Effect 10 2.2.2 多重激子效應 Multiple Exciton Generation 12 2.2.3 迷你傳導帶效應 Minibands effect 13 2.3 量子點敏化太陽能電池 Quantum Dots of Sensitized Solar cell (QDSSC) 14 2.3.1 基本原理 14 2.3.2 元件介紹 17 2.3.3 量子點敏化劑製備方法 30 三、實驗步驟 41 3.1 實驗藥品 41 3.2 實驗儀器 43 3.3 實驗流程簡介 44 3.4 導電玻璃清洗 45 3.5 光電極薄膜基板製備 46 3.5.1 TiCl4前處理 46 3.5.2 網印法網印TiO2薄膜 46 3.6 量子點敏化劑置備 47 3.6.1 CIGSe前驅物母液製備 47 3.6.2 CIGSe量子點合成 48 3.7 共吸附劑配製 48 3.8 ZnS/ZnSe/MnZnSe鈍化層 49 3.8.1 前驅物溶液配製 49 3.8.2 MnZnSe量子點合成 50 3.8.3 鈍化層沉積 51 3.9 電解液之配製 52 3.10 CuS背電極製備 52 3.11 電池元件封裝 53 四、結果與討論 54 4.1 鈍化層應用於元件之效能 55 4.1.1. ZnS鈍化層應用於元件之光電轉換效率 56 4.1.2. ZnSe鈍化層之光電轉換效率 57 4.1.3. ZnSe/ZnS混合鈍化層應用於元件之光電轉換效率 60 4.2 鈍化層應用於元件之分析 62 4.2.1. 入射光電轉換效率(Incident photon to charge carrier efficiency,IPCE) 62 4.2.2 電化學阻抗分析(Electrochemical Impedance Spectroscopy,EIS) 63 4.2.3 光強度調制光電流/光電壓分析(Intensity Modulated Photocurrent/Photovoltage Spectroscopy,IMPS/IMVS) 68 4.2.4 開路電壓衰退分析(Open-Circuit Voltage Decay,OCVD) 70 4.3 膠體量子點為鈍化層之應用 72 4.3.1 紫外光/可見光光譜儀分析(UV) 72 4.3.2 紫外光電子能譜分析(Ultraviolet Photoelectron Spectroscopy,UPS) 73 4.3.3 MnZnSe鈍化層應用於元件之光電轉化效率 75 五、結論與未來展望 77 參考文獻 78

    [1] J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, L. Westfall, “International energy outlook 2016 with projections to 2040.” USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis, 2016.
    [2] C. E. Fritts, “On a new form of selenium cell, and some electrical discoveries made by its use.” American Journal of Science, 1883, (156), 465-472.
    [3] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power.” Journal of Applied Physics, 1954, (25), 676-677.
    [4] L. Kazmerski, “Best research cell efficiencies chart.” National Renewable Energy Laboratory (NREL), 2012.
    [5] E. Centurioni, D. Iencinella, “Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance.” IEEE Electron Device Letters, 2003, (24), 177-179.
    [6] D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla, A. N. Tiwari, “Microstructural and chemical studies of interfaces between Cu (In, Ga) Se2 and In2S3 layers.” Journal of Applied Physics, 2005, (97), 084908.
    [7] C. Battaglia, A. Cuevas, S. De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives.” Energy & Environmental Science, 2016, (9), 1552-1576.
    [8] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell.” Nature, 1976, (261), 402.
    [9] B. O'regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.” nature, 1991, (353), 737.
    [10] 賴炤銘, & 李錫隆, “奈米材料的特殊效應與應用.” CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 2003, (61), 585-597.
    [11] F. T. Rabouw, C. de Mello Donega, “Excited-State Dynamics in Colloidal Semiconductor Nanocrystals.” Photoactive Semiconductor Nanocrystal Quantum Dots, Springer, Cham, 2017, 1-30.
    [12] 陳學仕, 量子點簡介, 化工資訊ChemNet奈米專欄, 2002, 09.
    [13] Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties.” The Journal of Physical Chemistry, 1991, (95), 525-532.
    [14] M. Green, “Solution routes to III-V semiconductor quantum dots.” Current opinion in solid state & materials science, 2002, (4), 355-363.
    [15] https://www.nanosysinc.com/
    [16] G. Gaur, “Quantum dot integrated silicon photonic devices for optical sensor applications.” Doctoral dissertation, Vanderbilt University, 2015.
    [17] P. Guyot-Sionnest, M. Shim, C. Matranga, M. Hines, “Intraband relaxation in CdSe quantum dots.” Physical Review B, 1999, (60), R2181.
    [18] M. Kouhnavard, S. Ikeda, N. A. Ludin, N. A. Khairudin, B. V. Ghaffari, M. A. Mat-Teridi, S. Sepeai, K. Sopian, “A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells.” Renewable and Sustainable Energy Reviews, 2014, (37), 397-407.
    [19] 卫会云, 王国帅, 吴会觉, 罗艳红, 李冬梅, 孟庆波, “量子点敏化太阳能电池研究进展.” 物理化学学报, 2016, (32), 201-213.
    [20] G. Chen, J. Seo, C. Yang, P. N. Prasad, “Nanochemistry and nanomaterials for photovoltaics.” Chemical Society Reviews, 2013, (42), 8304-8338.
    [21] A. a. m. i. j. o. p. c. l. P.-C. Sinica, 楊明輝 “透明導電膜材料與成膜技術的新發展”, 工業材料, 2000, 第189期, 161~174.
    [22] D. B. Fraser, H. D. Cook, “Film deposition with the Sputter Gun.” Journal of Vacuum Science and Technology, 1977, (14), 147-151.
    [23] L. Davis, “Properties of transparent conducting oxides deposited at room temperature.” Thin Solid Films, 1993, (236), 1-5.
    [24] H. W. Lehmann, R. Widmer, “Preparation and properties of reactively co-sputtered transparent conducting films.” Thin Solid Films, 1975, (27), 359-368.
    [25] E. Shanthi, A. Banerjee, V. Dutta, K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb+ F).” Journal of Applied Physics, 1982, (53), 1615-1621.
    [26] J. Desilvestro, M. Graetzel, L. Kavan, J. Moser, J. Augustynski, “Highly efficient sensitization of titanium dioxide.” Journal of the American Chemical Society, 1985, (107), 2988-2990.
    [27] S. Jin, E. Shin, J. Hong, “TiO2 nanowire networks prepared by titanium corrosion and their application to bendable dye-sensitized solar cells.” Nanomaterials, 2017, (7), 315.
    [28] K. Keis, L. Vayssieres, S. E. Lindquist, A. Hagfeldt, “Nanostructured ZnO electrodes for photovoltaic applications.” Nanostructured Materials, 1999, (12), 487-490.
    [29] S. Ferrere, A. Zaban, B. A. Gregg, “Dye sensitization of nanocrystalline tin oxide by perylene derivatives.” The Journal of Physical Chemistry B, 1997, (101), 4490-4493.
    [30] K. Sayama, H. Sugihara, H. Arakawa, “Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye.” Chemistry of Materials, 1998, (10), 3825-3832.
    [31] Z. Li, L. Yu, Y. Liu, S. Sun, “Efficient quantum dot-sensitized solar cell based on CdSxSe1-x/Mn-CdS/TiO2 nanotube array electrode.” Electrochimica Acta, 2015,
    (153), 200-209.
    [32] J. Jiao, Z. J. Zhou, W. H. Zhou, S. X. Wu, “CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application.” Materials Science in Semiconductor Processing, 2013, (16), 435-440.
    [33] Z. Peng, Y. Liu, Y. Zhao, W. Shu, K. Chen, Q. Bao, W. Chen, “Efficiency enhancement of TiO2 nanodendrite array electrodes in CuInS2 quantum dot sensitized solar cells.” Electrochimica Acta, 2013, 111, 755-761.
    [34] Z. Li, L. Yu, Y. Liu, S. Sun, “CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency.” Electrochimica Acta, 2014, (129), 379-388.
    [35] C. J. Raj, S. N. Karthick, S. Park, K. V. Hemalatha, S. K. Kim, K. Prabakar, H. J. Kim, “Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell.” Journal of Power Sources, 2014, (248), 439-446.
    [36] H. Chen, W. Li, H. Liu, L. Zhu, “CdS quantum dots sensitized single-and multi-layer porous ZnO nanosheets for quantum dots-sensitized solar cells.” Electrochemistry Communications, 2011, (13), 331-334.
    [37] A. B. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells.” Nano letters, 2007, (7), 2183-2187.
    [38] Y. Zhao, H. Guo, H. Hua, Y. Xi, C. Hu, “Effect of architectures assembled by one dimensional ZnO nanostructures on performance of CdS quantum dot-sensitized solar cells.” Electrochimica Acta, 2014, (115), 487-492.
    [39] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng, “CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes.” Journal of the American Chemical Society, 2008, (130), 1124-1125.
    [40] A. Badawi, N. Al-Hosiny, S. Abdallah, A. Merazga, H. Talaat, “Single wall carbon nanotube/titania nanocomposite photoanodes enhance the photovoltaic performance of cadmium selenide quantum dot-sensitized solar cells.” Materials Science in Semiconductor Processing, 2014, (26), 162-168.
    [41] S. Li, Z. Chen, T. Li, H. Gao, C. Wei, W. Li, W. Kong, W. Zhang, “Vertical nanosheet-structured ZnO/TiO2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells.” Electrochimica Acta, 2014, (127), 362-368.
    [42] H. L. Feng, W. Q. Wu, H. S. Rao, Q. Wan, L. B. Li, D. B. Kuang, C. Y. Su, “Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells.” ACS applied materials & interfaces, 2015, (7), 5199-5205.
    [43] 陳信宏, “染料敏化太陽能電池近期發展.” 光連: 光電產業與技術情報, 2009, (84), 22-28.
    [44] O. Kruse, J. Rupprecht, J. H. Mussgnug, G. C. Dismukes, B. Hankamer, “Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies.” Photochemical & Photobiological Sciences, 2005, (4), 957-970.
    [45] S. V. Kershaw, A. S. Susha, A. L. Rogach, “Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties.” Chemical Society Reviews, 2013, (42), 3033-3087.
    [46] X. Song, M. Wang, T. Xing, J. Deng, J. Ding, Z. Yang, X. Zhang, “Fabrication of micro/nano-composite porous TiO2 electrodes for quantum dot-sensitized solar cells.” Journal of Power Sources, 2014, (253), 17-26.
    [47] A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, “Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells.” Solar Energy, 2013, (88), 137-143.
    [48] L. Tao, Y. Xiong, H. Liu, W. Shen, “High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays.” Nanoscale, 2014, (6), 931-938.
    [49] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G. J. Wang, “Ag2S quantum dot-sensitized solar cells.” Electrochemistry Communications, 2010, (12), 1158-1160.
    [50] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, “Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability.” ACS nano, 2013, (7), 5215-5222.
    [51] J. Y. Chang, C. H. Li, Y. H. Chiang, C. H. Chen, P. N. Li, “Toward the facile and ecofriendly fabrication of quantum dot-sensitized solar cells via thiol coadsorbent assistance.” ACS applied materials & interfaces, 2016, (8), 18878-18890.
    [52] J. S. Niezgoda, E. Yap, J. D. Keene, J. R. McBride, S. J. Rosenthal, “Plasmonic CuxInyS2 Quantum Dots Make Better Photovoltaics Than Their Nonplasmonic Counterparts.” Nano letters, 2014, (14), 3262-3269.
    [53] H. McDaniel, N. Fuke, J. M. Pietryga, V. I. Klimov, “Engineered CuInSe x S2–x Quantum Dots for Sensitized Solar Cells.” The journal of physical chemistry letters, 2013, (4), 355-361.
    [54] Z. Yang, C. Y. Chen, C. W. Liu, H. T. Chang, “Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells.” Chemical Communications, 2010, (46), 5485-5487.
    [55] M. A. Hossain, J. R. Jennings, Z. Y. Koh, Q. Wang, “Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities.” Acs Nano, 2011, (5), 3172-3181.
    [56] H. J. Lee, J. Bang, J. Park, S. Kim, S. M. Park, “Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes.” Chemistry of Materials, 2010, (22), 5636-5643.
    [57] W. Zhang, H. Zhang, Y. Feng, X. Zhong, “Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared.” ACS nano, 2012, (6), 11066-11073.
    [58] D. W. Jeong, J. Y. Kim, H. W. Seo, K. M. Lim, M. J. Ko, T. Y. Seong, B. S. Kim, “Characteristics of gradient-interface-structured ZnCdSSe quantum dots with modified interface and its application to quantum-dot-sensitized solar cells.” Applied Surface Science, 2018, (429), 16-22.
    [59] S. M. Kobosko, P. V. Kamat, “Indium-Rich AgInS2–ZnS Quantum Dots—Ag-/Zn-Dependent Photophysics and Photovoltaics.” The Journal of Physical Chemistry C, 2018, (122), 14336-14344.
    [60] L.Yue, H. Rao, J. Du, Z. Pan, J. Yu, X. Zhong, “Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances, 2018, (8), 3637-3645.
    [61] M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, C. Lin, “Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes.” Sustainable Energy & Fuels, 2017, (1), 1217-1231.
    [62] Y. Dong, J. Choi, H. K. Jeong, D. H. Son, “Hot electrons generated from doped quantum dots via upconversion of excitons to hot charge carriers for enhanced photocatalysis.” Journal of the American Chemical Society, 2015, (137), 5549-5554.
    [63] G. Manna, S. Jana, R. Bose, N. Pradhan, “Mn-doped multinary CIZS and AIZS nanocrystals.” The journal of physical chemistry letters, 2012, (3), 2528-2534.
    [64] P. Yang, M. Ando, N. Murase, “Encapsulation of emitting CdTe QDs within silica beads to retain initial photoluminescence efficiency.” Journal of colloid and interface science, 2007, (316), 420-427.
    [65] J. Park, S. W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence.” Journal of Materials Chemistry, 2011, (21), 3745-3750.
    [66] L. Li, T. J. Daou, I. Texier, T. T. Kim Chi, N. Q. Liem, P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging.” Chemistry of Materials, 2009, (21), 2422-2429.
    [67] C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, V. L. Colvin, W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication.” Nanomaterials, 2016, (6), 13.
    [68] M. Koneswaran, R. Narayanaswamy, “Ultrasensitive detection of vitamin B6 using functionalised CdS/ZnS core–shell quantum dots.” Sensors and Actuators B: Chemical, 2015, (210), 811-816.
    [69] Y. Chen, Q. Tao, W. Fu, H. Yang, X. Zhou, Y. Zhang, S. Su, P. Wang, M. Li, “Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO.” Electrochimica Acta, 2014, (118), 176-181.
    [70] S. H. Hsu, S. F. Hung, S. H. Chien, “CdS sensitized vertically aligned single crystal TiO2 nanorods on transparent conducting glass with improved solar cell efficiency and stability using ZnS passivation layer.” Journal of Power Sources, 2013, (233), 236-243.
    [71] S. Hachiya, Q. Shen, T. Toyoda, “Effect of ZnS coatings on the enhancement of the photovoltaic properties of PbS quantum dot-sensitized solar cells.” Journal of Applied Physics, 2012, (111), 104315.
    [72] F. Huang, J. Hou, H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu, G. Cao, “Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells.” Nano Energy, 2017, (32), 433-440.
    [73] F. Huang, J. Hou, Q. Zhang, Y. Wang, R. C. Massé, S. Peng, H. Wang, J. Liu, G. Cao, “Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer.” Nano Energy, 2016, (26), 114-122.
    [74] D. Esparza, T. Lopez-Luke, J. Oliva, A. Cerdán-Pasarán, A. Martínez-Benítez, I. Mora-Seró, E. De la Rosa, “Enhancement of efficiency in quantum dot sensitized solar cells based on CdS/CdSe/CdSeTe heterostructure by improving the light absorption in the VIS-NIR region.” Electrochimica Acta, 2017, (247), 899-909.
    [75] C. Liu, L. Mu, J. Jia, X. Zhou, Y. Lin, “Boosting the cell efficiency of CdSe quantum dot sensitized solar cell via a modified ZnS post-treatment.” Electrochimica Acta, 2013, (111), 179-184.
    [76] M. A. Abate, J. Y. Chang, “Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture.” Solar Energy Materials and Solar Cells, 2018, (182), 37-44.
    [77] Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, X. Zhong, “Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%.” Chemistry of Materials, 2015, (27), 8398-8405.
    [78] Z. Pan, X. Zhong, “A ZnS and metal hydroxide composite passivation layer for recombination control in high efficiency quantum dot sensitized solar cells.” Journal of Materials Chemistry A, 2016, (4), 18976-18982.
    [79] C. V. Gopi, M. Venkata-Haritha, S. K. Kim, H. J. Kim, “Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn–ZnSe shell structure with enhanced light absorption and recombination control.” Nanoscale, 2015, (7), 12552-12563.
    [80] Y. S. Lee, C. V. Gopi, A. E. Reddy, C. Nagaraju, H. J. Kim, “High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu–ZnS passivation layer.” New Journal of Chemistry, 2017, (41), 1914-1917.
    [81] Q. Tang, H.Cai, S. Yuan, X. Wang, “Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications.” Journal of Materials Chemistry A, 2013, (1), 317-323.
    [82] B. He, Q. Tang, T. Liang, Q. Li, “Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes.” Journal of Materials Chemistry A, 2014, (2), 3119-3126.
    [83] Y. L. Lee, C. H. Chang, “Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells.” Journal of Power Sources, 2008, (185), 584-588.
    [84] V. Chakrapani, D. Baker, P. V. Kamat, “Understanding the Role of the Sulfide Redox Couple (S2–/Sn2–) in Quantum Dot-Sensitized Solar Cells.” Journal of the American Chemical Society, 2011, (133), 9607-9615.
    [85] L. Jiang, T. You, W. Q. Deng, “Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.” Nanotechnology, 2013, (24), 415401.
    [86] C. Y. Chou, C. P. Lee, R. Vittal, K. C. Ho, “Efficient quantum dot-sensitized solar cell with polystyrene-modified TiO2 photoanode and with guanidine thiocyanate in its polysulfide electrolyte.” Journal of Power Sources, 2011, (196), 6595-6602.
    [87] H. Kim, I. Hwang, K. Yong, “Highly durable and efficient quantum dot-sensitized solar cells based on oligomer gel electrolytes.” ACS applied materials & interfaces, 2014, (6), 11245-11253.
    [88] P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells.” Journal of Fluorine Chemistry, 2004, (125), 1241-1245.
    [89] H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S. M. Zakeeruddin, M. Grätzel, “Charge collection and pore filling in solid-state dye-sensitized solar cells.” Nanotechnology, 2008, (19), 424003.
    [90] I. Zarazúa, E. De la Rosa, T. López-Luke, J. Reyes-Gomez, S. Ruiz, C. Angeles Chavez, J. Z. Zhang, “Photovoltaic conversion enhancement of CdSe quantum dot-sensitized TiO2 decorated with Au nanoparticles and P3OT.” The Journal of Physical Chemistry C, 2011, (115), 23209-23220.
    [91] P. P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. Mora-Seró, J. Bisquert, “Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter.” The Journal of Physical Chemistry C, 2011, (116), 1579-1587.
    [92] G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells.” Solar Energy Materials and Solar Cells, 2001, (70), 85-101.
    [93] I. Hwang, K. Yong, “Counter Electrodes for Quantum‐Dot‐Sensitized Solar Cells.” ChemElectroChem, 2015, (2), 634-653.
    [94] S. Wang, J. Tian, “Recent advances in counter electrodes of quantum dot-sensitized solar cells.” RSC Advances, 2016, (6), 90082-90099.
    [95] M. Ye, C. Chen, N. Zhang, X. Wen, W. Guo, C. Lin, “Quantum‐Dot Sensitized Solar Cells Employing Hierarchical Cu2S Microspheres Wrapped by Reduced Graphene Oxide Nanosheets as Effective Counter Electrodes.” Advanced Energy Materials, 2014, (4), 1301564.
    [96] W. Ke, G. Fang, H. Lei, P. Qin, H. Tao, W. Zeng, J. Wang, X. Zhao, “An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells.” Journal of Power Sources, 2014, (248), 809-815.
    [97] G. S. Selopal, I. Concina, R. Milan, M. M. Natile, G. Sberveglieri, A. Vomiero, “Hierarchical self-assembled Cu2S nanostructures: Fast and reproducible spray deposition of effective counter electrodes for high efficiency quantum dot solar cells.” Nano Energy, 2014, (6), 200-210.
    [98] H. J. Kim, T. B. Yeo, S. K. Kim, S. S. Rao, A. D. Savariraj, K. Prabakar, C. V. Gopi, “Optimal‐Temperature‐Based Highly Efficient NiS Counter Electrode for Quantum‐Dot‐Sensitized Solar Cells.” European Journal of Inorganic Chemistry, 2014, (2014), 4281-4286.
    [99] K. Zhao, H. Yu, H. Zhang, X. Zhong, “Electroplating cuprous sulfide counter electrode for high-efficiency long-term stability quantum dot sensitized solar cells.” The Journal of Physical Chemistry C, 2014, (118), 5683-5690.
    [100] W. Li, X. Zhong, “Capping ligand-induced self-assembly for quantum dot sensitized solar cells.” The journal of physical chemistry letters, 2015, (6), 796-806.
    [101] D. R. Pernik, K. Tvrdy, J. G. Radich, P. V. Kamat, “Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment.” The Journal of Physical Chemistry C, 2011, (115), 13511-13519.
    [102] Q. Shen, J. Kobayashi, L. J. Diguna, T. Toyoda, “Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells.” Journal of Applied Physics, 2008, (103), 084304.
    [103] Z. Makhdoumi-Kakhaki, A. Youzbashi, P. Sangpour, N. Naderi, A. Kazemzadeh, “Effects of film thickness and stoichiometric on the electrical, optical and photodetector properties of CdS quantum dots thin films deposited by chemically bath deposition method at different bath temperature.” Journal of Materials Science: Materials in Electronics, 2016, (27), 12931-12939.
    [104] Y. Choi, M. Seol, W. Kim, K. Yong, “Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dot-sensitized solar cell application.” The Journal of Physical Chemistry C, 2014, (118), 5664-5670.
    [105] H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeeruddin, “Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.” Nano letters, 2009, (9), 4221-4227.
    [106] R. Vogel, P. Hoyer, H. Weller, “Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors.” The Journal of Physical Chemistry, 1994, (98), 3183-3188.
    [107] D. Liu, P. V. Kamat, “Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films.” The Journal of Physical Chemistry, 1993, (97), 10769-10773.
    [108] J. M. Dona, J. Herrero, “Chemical bath deposition of CdS thin films: an approach to the chemical mechanism through study of the film microstructure.” Journal of the Electrochemical Society, 1997, (144), 4081-4091.
    [109] S. Lindroos, A. Arnold, M. Leskelä, “Growth of CuS thin films by the successive ionic layer adsorption and reaction method.” Applied Surface Science, 2000, (158), 75-80.
    [110] C. H. Chang, Y. L. Lee, “Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells.” Applied Physics Letters, 2007, (91), 053503.
    [111] H. M. Pathan, C. D. Lokhande, “Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method.” Bulletin of Materials Science, 2004, (27), 85-111.
    [112] S. Keuleyan, E. Lhuillier, V. Brajuskovic, P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors.” Nature Photonics, 2011, (5), 489.
    [113] L. Li, A. Pandey, D. J. Werder, B. P. Khanal, J. M. Pietryga, V. I. Klimov, “Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission.” Journal of the American Chemical Society, 2011, (133), 1176-1179.
    [114] C. de Mello Donegá, “Synthesis and properties of colloidal heteronanocrystals.” Chemical Society Reviews, 2011, (40), 1512-1546.
    [115] S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gomez, L. J. Diguna, Q. Shen, T. Toyoda, J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells.” Nanotechnology, 2009, (20), 295204.
    [116] A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, U. Banin, “Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition.” ACS nano, 2010, (4), 5962-5968.
    [117] A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller, H. Weller, “Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals.” The Journal of Physical Chemistry B, 1999, (103), 3065-3069.
    [118] L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals.” Nature materials, 2003, (2), 382.
    [119] G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent, “Colloidal quantum dot solar cells.” Chemical reviews, 2015, (115), 12732-12763.
    [120] S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N. M. Hwang, J. G. Park, T. Hyeon, “Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process.” Journal of the American Chemical Society, 2007, (129), 12571-12584.
    [121] U. Tohgha, K. Varga, M. Balaz, “Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with D-or L-cysteine.” Chemical Communications, 2013, (49), 1844-1846.
    [122] X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo, Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells.” Journal of Materials Chemistry, 2011, (21), 15903-15905.
    [123] A. Sahasrabudhe, S. Bhattacharyya, “Dual sensitization strategy for high-performance core/shell/quasi-shell quantum dot solar cells.” Chemistry of Materials, 2015, (27), 4848-4859.
    [124] X. Song, M. Wang, J. Deng, Z. Yang, C. Ran, X. Zhang, X. Yao, “One-Step Preparation and Assembly of Aqueous Colloidal CdSxSe1–x Nanocrystals within Mesoporous TiO2 Films for Quantum Dot-Sensitized Solar Cells.” ACS applied materials & interfaces, 2013, (5), 5139-5148.
    [125] P. Allongue, E. Souteyrand, “Semiconductor electrodes modified by electrodeposition of discontinuous metal films: Part I. Role of the film morphology.” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, (269), 361-374.
    [126] J. A. Switzer, C. J. Hung, E. W. Bohannan, M. G. Shumsky, T. D. Golden, D. C. Van Aken, “Electrodeposition of quantum‐confined metal/semiconductor nanocomposites.” Advanced Materials, 1997, (9), 334-338.
    [127] G. Riveros, H. Gomez, R. Henrıquez, R. Schrebler, R. E. Marotti, E. A. Dalchiele, “Electrodeposition and characterization of ZnSe semiconductor thin films.” Solar energy materials and solar cells, 2001, (70), 255-268.
    [128] C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, V. Munoz-Sanjose, “A new CdTe/ZnO columnar composite film for Eta-solar cells.” Physica E: Low-dimensional Systems and Nanostructures, 2002, (14), 229-232.
    [129] C.Lévy‐Clément, R. Tena‐Zaera, M. A. Ryan, A. Katty, G. Hodes, “CdSe‐sensitized p‐CuSCN/nanowire n‐ZnO heterojunctions.” Advanced Materials, 2005, (17), 1512-1515.
    [130] L. Besra, M. Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD).” Progress in materials science, 2007, (52), 1-61.
    [131] K. W. Song, R. Costi, V. Bulović, “Electrophoretic Deposition of CdSe/ZnS Quantum Dots for Light‐Emitting Devices.” Advanced Materials, 2013, (25), 1420-1423.
    [132] W. A. Smith, I. D. Sharp, N. C. Strandwitz, J. Bisquert, “Interfacial band-edge energetics for solar fuels production.” Energy & Environmental Science, 2015, (8), 2851-2862.
    [133] S. Chen, L. W. Wang, “Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution.” Chemistry of Materials, 2012, (24), 3659-3666.
    [134] 陳頤承, 郭昭顯, 陳俊亨, 太陽電池量測技術, 工業材料雜誌258期, 2008年6月
    [135] B. T. Sneed, A. P. Young, C. K. Tsung, “Building up strain in colloidal metal nanoparticle catalysts.” Nanoscale, 2015, (7), 12248-12265.
    [136] A. J. Bard, L. R. Faulkner, “Fundamentals and applications.” Electrochemical Methods, 2001, (2), 482.
    [137] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions.” Electrochimica Acta, 2002, (47), 4213-4225.
    [138] J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, L. M. Peter, “Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy.” The Journal of Physical Chemistry B, 2003, (107), 7536-7539.
    [139] A. Zaban, M. Greenshtein, J. Bisquert, “Determination of the electron lifetime in nanocrystalline dye solar cells by open‐circuit voltage decay measurements.” ChemPhysChem, 2003, (4), 859-864.
    [140] H. Zhong, S. S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li, G. D. Scholes, “Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties.” ACS nano, 2010, (4), 5253-5262.
    [141] 田大昌, 陳俊榮, 謝孟婷, 黃啟貞, 蔡玲娜, 孫亞君, 林麗娟, 光電子能階分析在奈米有機半導體上之應用, 工業材料雜誌251期, 2007年11月
    [142] H. Y. Chen, T. Y. Chen, D. H. Son, “Measurement of energy transfer time in colloidal Mn-doped semiconductor nanocrystals.” The Journal of Physical Chemistry C, 2010, (114), 4418-4423.
    [143] T. Kuroda, H. Ito, F. Minami, H. Akinaga, “Ultrafast energy transfer in manganese-doped ZnSe.” Journal of luminescence, 1997, (72), 106-107.
    [144] Z. Tachan, M. Shalom, I. Hod, S. Ruhle, S. Tirosh, A. Zaban, “PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells.” The Journal of Physical Chemistry C, 2011, (115), 6162-6166.
    [145] J. M. Zen, H. H. Chung, G. Ilangovan, A. S. Kumar, “Electrochemical impedance study and sensitive voltammetric determination of Pb (II) at electrochemically activated glassy carbon electrodes.” Analyst, 2000, (125), 1139-1146.
    [146] O. Madelung, U. Rössler, M. Schulz, “II-VI and I-VII compounds; semimagnetic compounds.” Berlin Heidelberg: Springer-Verlag, 1999, (41), 1-5.

    無法下載圖示 全文公開日期 2024/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE