簡易檢索 / 詳目顯示

研究生: 蔡佳珊
Jia-Shan Tsai
論文名稱: 微波合成金屬硫化物背電極應用於量子點敏化太陽能電池
Microwave synthesized metal sulfide as counter electrode for quantum dots-sensitized solar cells
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 蔡伸隆
Shen-Long Tsai
周宗翰
Tzung-Han Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 背電極微波合成光電極量子點
外文關鍵詞: Counter electrode, microwave assisted, photoanode, QDs
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過微波輔助一步法合成金屬硫化物背電極與CuInS2/In2S3量子點。此為一種簡易、快速合成以及方便的合成方法,相較於目前文獻的製程在於製程時間大幅縮短,避免繁複過程,即可將金屬硫化物沈積於背電極,使其應用於量子點敏化太陽能電池(Quantum Dots Sensitized Solar Cells, QDSSC)。
    本實驗藉由搭配不同陽離子與硫陰離子的前驅物溶液的反應,可以獲得CuS, NiS, CoS2和PbS金屬硫化物背電極。研究發現CuS背電極的量子點敏化太陽能電池可以獲得最佳光電轉換效率8.32%。
    利用電化學系統與循環伏安法分析金屬硫化物背電極與多硫化物電解液的催化性質、穩定性及阻抗值。相較於其他的金屬硫化物背電極,CuS背電極與多硫化物電解液間有較佳催化特性,因而獲得最佳光電轉換效率。


    In this study, microwave assisted synthetic route was applied for rapid, facial and effective synthesis of counter electrode(CE) for quantum dots-sensitized solar cells(QDSSCs) .Moreover, it is applied for in situ deposition of metal sulfides on the CE, shorten the process time and avoids post treatments. Different metal sulfide CE(CuS, NiS, CoS2, PbS) and aqueous CuInS2/In2S3 quantum dots (QDs) are synthesized by using rapid microwave assisted synthesis approach. The CuInS2/In2S3 QDs photoanode with the CuS CE exhibits champion of short circuit current density (Jsc) of 26.76 mA/cm2, open voltage (Voc) of 650 mV and power conversion efficiency(PCE) of 8.32% at one sun (AM 1.5 G, 100 mW/cm2).
    Electrochemical impedance spectroscopy (EIS), Tafel and cyclic voltammetry (CV)
    measurement was employed to understand electro dynamic behavior of metal sulfide CE. Analysis of the data shows that CuS CE performs high electrocatalytic activity towards polysulfide reduction compared with other metal sulfide CE.

    摘要 Abstract 總目錄 表目錄 圖目錄 第一章 緒論 1.1 前言 1.2 太陽能電池之發展概況 1.2.1 矽晶太陽能電池 1.2.2 薄膜太陽能電池 1.2.3 染料敏化太陽能電池 1.3 研究動機與內容 第二章 文獻回顧 2.1 半導體奈米材料之特性 2.2 量子點之特性 2.3 量子點敏化太陽能電池(Quantum dots of Sensitized Solar cell) 2.3.1 起源與發展 2.3.2 元件介紹 2.4背電極種類與合成方法 第三章 實驗方法與原理 3.1 實驗藥品 3.2 實驗器材 3.3 整體實驗概觀 3.4 導電玻璃(FTO)基板清洗 3.5 光電極之二氧化鈦薄膜製備 3.6 量子點敏化劑之製備與吸附 3.6.1 水相量子點CuInS2/In2S3合成 3.6.2 水相量子點CuInS2/In2S3吸附 3.6.3 沉積ZnS鈍化層 3.7 背電極製備 3.7.1 母液配製 3.7.2 不同種類之背電極合成 3.8 電解液製備 第四章 實驗結果與討論 4.1 水相量子點CuInS2/In2S3結構分析 4.2 光電極薄膜之TEM分析 4.3 金屬硫化物背電極合成之介紹 4.4 合成金屬硫化物之背電極最佳條件探討 4.4.1 不同硫來源之光電轉化效率分析 4.4.2 不同Cu離子濃度之光電轉換效率分析 4.4.3 微波輔助反應時間之光電轉換效率分析 4.5 金屬硫化物背電極結構分析 4.6 金屬硫化物背電極之光電轉換效率分析 4.7 入射光電轉換效率(Incident photon to charge carrier efficiency,IPCE) 4.8 金屬硫化物之電化學分析 4.8.1 電化學阻抗分析(Electrochemical impedance spectroscopy, EIS) 4.8.2 Tafel量測分析 4.8.3 循環伏安法量測分析(Cyclic voltammetry, CV) 第五章 結論與未來展望 第六章 參考文獻

    1. J. P. Holdren, Sci., 2008, 319, 424.
    2. N. Lior, Energy, 2010, 35, 2361.
    3. J. Barber, Chem. Soc. Rev., 2009, 38, 185.
    4. B. O'Regan and M. Gratzel, Nature, 1991, 353, 737.
    5. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402.
    6. E. C. a. D. Iencinella, Ieee. Elec. Dev. Lett., 2003, 24, 177.
    7. D. R. D. Abou-Ras, G. Kostorz, S. Spiering, M. Powalla, and A. N. Tiwari, J. Appl. Phys., 2005, 97, 084908.
    8. http://chem.kshs.kh.edu.tw/wecan/a0098.pdf
    9. 陳信宏, 光連雙月刊, 2009, 84, 22.
    10. 莊萬發, 超微粒子理論應用. (復漢, 1995).
    11. A. N. Goldstein, C. M. Echer and A. P. Alivisatos, Sci., 1992, 256, 1425.
    12. http://nano.mse.ttu.edu.tw/html/doc/Class01_Intro/2.pdf
    13. Y. Wang and N. Herron, J. Phys. Chem., 1991, 95, 525.
    14. M. Green, Curr. Opin. Solid State Mater., 2002, 6, 355.
    15. A. J. Nozik, Physica E, 2002, 14, 115.
    16. W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510.
    17. A. L. Rogach, L. Katsikas, A. Kornowski, A. E. D. Su, H. Weller and a. B. Bunsen, Phys. Chem., 1996, 100, 1772.
    18. A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich and J. F. Donegan, J. Phys. Chem. C, 2007, 111, 14628.
    19. T. Takagahara and K. Takeda, Phys. Rev. B, 1992, 46, 15578.
    20. S. Kan, T. Mokari, E. Rothenberg and U. Banin, Nat. Mater., 2003, 2, 155.
    21. Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl. Phys., 2008, 103, 084304.
    22. G. Smestad, C. Bignozzi and R. Argazzi, Sol. Energy Mater. Sol. Cells, 1994, 32, 259.
    23. M. C. Hanna and A. J. Nozik, J. Appl. Phys., 2006, 100, 074510.
    24. N. Serpone, E. Borgarello and M. Gratzel, J. Chem. Soc., Chem., 1984, 342.
    25.http://www.tnu.edu.tw/ee/upimages/file/Std-100/3005/%E9%80%8F%E6%98%8E%E5%B0%8E%E9%9B%BB%E8%96%84%E8%86%9C.htm
    26. J. Desilvestro, M. Graetzel, L. Kavan, J. Moser and J. Augustynski, J. Am. Chem. Soc., 1985, 107, 2988.
    27. S. Ferrere, A. Zaban and B. A. Gregg, J. Phys. Chem. B, 1997, 101, 4490.
    28. K. Keis, L. Vayssieres, S.-E. Lindquist and A. Hagfeldt, Nanostruct. Mater., 1999, 12, 487.
    29. M. Y. El Zayat, A. O. Saed and M. S. El-Dessouki, Int. J. Hydrogen Energy, 1998, 23, 259.
    30. L. Li, X. Yang, J. Zhao, J. Gao, A. Hagfeldt and L. Sun, J. Mater. Chem., 2011, 21, 5573.
    31. L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt and L. Sun, J. Am. Chem. Soc., 2011, 133, 8458.
    32. J. H. Bang and P. V. Kamat, ACS Nano, 2009, 3, 1467.
    33. Y. Xu and M. A. Schoonen, Am. Mineral., 2000, 85, 543.
    34. A. Hagfeldt and M. Grätzel, Acc. Chem. Res., 2000, 33, 269.
    35. S.-W. Rhee and W. Kwon, Korean J. Chem. Eng., 2011, 28, 1481.
    36. Z. Pan, I. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong and J. Bisquert, J. Am. Chem. Soc., 2014, 136, 9203.
    37. J. Luo, H. Wei, F. Li, Q. Huang, D. Li, Y. Luo and Q. Meng, Chem. Commun., 2014, 50, 3464.
    38. X. Song, M. Wang, J. Deng, Z. Yang, C. Ran, X. Zhang and X. Yao, ACS Appl. Mater. & Inter., 2013, 5, 5139.
    39. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng and X. Zhong, ACS Nano, 2013, 7, 5215.
    40. H. J. Lee, P. Chen, S.-J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel and M. K. Nazeeruddin, Langmuir, 2009, 25, 7602.
    41. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Nano Letters, 2009, 9, 4221.
    42. H. J. Lee, J.-H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel and M. K. Nazeeruddin, J. Phys. Chem. C, 2008, 112, 11600.
    43. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Sol. Energy Mater. Sol. Cells, 2001, 70, 85.
    44. G. Hodes, J. Manassen and D. Cahen, J. Electrochem. Soc., 1980, 127,
    45. V. Jovanovski, V. González-Pedro, S. Giménez, E. Azaceta, G. Cabañero, H. Grande, R. Tena-Zaera, I. Mora-Seró and J. Bisquert, J. Am. Chem. Soc., 2011, 133, 20156.
    46. H. Yuan, J. Lu, X. Xu, D. Huang, W. Chen, Y. Shen and M. Wang, J. Electrochem. Soc., 2013, 160, H624.
    47. Y. Tu, J. Wu, Z. Lan, Y. Lin, Q. Liu, B. Lin and G. Liu, J. Mater. Sci. Mater. El., 2014, 25, 3016.
    48. D. H. Youn, M. Seol, J. Y. Kim, Ji-Wook Jang, Y. Choi, K. Yong and J. S. Lee, ChemSusChem, 2013, 6, 261.
    49. S. AbdulAlmohsin, J. Armstrong and J. B. Cui, J. Renew. Sust. Energ., 2012, 4, 043108.
    50. C.-h. Zhou, Y. Yang, J. Zhang, S. Xu, S.-j. Wu, H. Hu, B.-l. Chen, Q.-d. Tai, Z.-h. Sun and X.-z. Zhao, Electrochim. Acta, 2009, 54, 5320.
    51. C. F. Wu, Z. X. Wu, J. Wei, H. Dong and Y. C. Gao, ECS Electro. Lett., 2013, 2, H31.
    52. C. Justin Raj, K. Prabakar, A. Dennyson Savariraj and H.-J. Kim, Electrochim. Acta, 2013, 103, 231.
    53. X.-Y. Yu, B.-X. Lei, D.-B. Kuang and C.-Y. Su, Chem. Sci., 2011, 2, 1396.
    54. Y.-L. Lee and Y.-S. Lo, Chem. Sci, 2009, 2, 604.
    55. T. Kiyonaga, T. Akita and H. Tada, Chem. Commun., 2009, 2011.
    56. G. Zhu, L. Pan, H. Sun, X. Liu, T. Lv, T. Lu, J. Yang and Z. Sun, ChemPhysChem, 2012, 13,
    57. Y.-P. Yoon, J.-H. Kim, S.-H. Kang, H. Kim, C.-J. Choi, K.-K. Kim and K.-S. Ahn, Appl. Phys. Lett., 2014, 105, 083116.
    58. S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair and A. S. Nair, J. Mater. Chem. A, 2014, 2, 4474.
    59. D. Chen, H. Zhang, Y. Liu and J. Li, Energy & Envionr. Sci., 2013, 6, 1362.
    60. J. D. Roy-Mayhew, D. J. Bozym, C. Punckt and I. A. Aksay, ACS Nano, 2010, 4, 6203.
    61. H. Zhu, J. Wei, K. Wang and D. Wu, Sol. Energy Mater. Sol. Cells, 2009, 93, 1461.
    62. M. Wu, X. Lin, T. Wang, J. Qiu and T. Ma, Energy & Envionr. Sci., 2011, 4, 2308.
    63. J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang and Q. Meng, Carbon, 2009, 47, 2704.
    64. H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu, K. Li and Q. Meng, J. Phys. Chem. C, 2010, 114, 11679.
    65. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, ACS Appl. Mater. & Inter., 2009, 1, 1145.
    66. P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey and Q. Qiao, Energy & Envionr. Sci., 2009, 2, 426.
    67. Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng and D. Li, Electrochem. Commun., 2010, 12, 327.
    68. S.-Q. Fan, B. Fang, J. H. Kim, J.-J. Kim, J.-S. Yu and J. Ko, Appl. Phys. Lett., 2010, 96, 063501.
    69. M. Seol, E. Ramasamy, J. Lee and K. Yong, J. Phys. Chem. C, 2011, 115, 22018.
    70. J. Lee, K. Sohn and T. Hyeon, Chem. Commun., 2002, 2674.
    71. J. Dong, S. Jia, J. Chen, B. Li, J. Zheng, J. Zhao, Z. Wang and Z. Zhu, J. Mater. Chem., 2012, 22, 9745.
    72. R. Jia, J. Chen, J. Zhao, J. Zheng, C. Song, L. Li and Z. Zhu, J. Mater. Chem., 2010, 20, 10829.
    73. Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song and Z. Zhu, ACS Nano, 2011, 5, 1677.
    74. M.-H. Yeh, C.-P. Lee, C.-Y. Chou, L.-Y. Lin, H.-Y. Wei, C.-W. Chu, R. Vittal and K.-C. Ho, Electrochim. Acta, 2011, 57, 277.
    75. J. G. Radich, R. Dwyer and P. V. Kamat, J. Phys. Chem. Lett., 2011, 2, 2453.
    76. H. Hu, J. Ding, J. Qian, Y. Li, L. Bai and N. Yuan, Mater. Lett., 2014, 114, 7.
    77. P. Parand, M. Samadpour, A. Esfandiar and A. Iraji Zad, ACS Photonics, 2014, 1, 323.
    78. G. Zhu, L. Pan, H. Sun, X. Liu, T. Lv, T. Lu, J. Yang and Z. Sun, Chem. Phys. Chem., 2012, 13, 769.
    79. X. Zhang, X. Huang, Y. Yang, S. Wang, Y. Gong, Y. Luo, D. Li and Q. Meng, ACS Appl. Mater. & Inter., 2013, 5, 5954.
    80. M. Seol, D. H. Youn, J. Y. Kim, J.-W. Jang, M. Choi, J. S. Lee and K. Yong, Adv. Energ. Mater., 2014, 4, 130075.
    81. X. Zeng, D. Xiong, W. Zhang, L. Ming, Z. Xu, Z. Huang, M. Wang, W. Chen and Y.-B. Cheng, Nanoscale, 2013, 5, 6992.
    82. Y. Zhao and C. Burda, Energy & Envionr. Sci., 2012, 5, 5564.
    83. X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Chem. Commun., 2011, 47, 2664.
    84. S. Gimenez, I. M.-S. o, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gomez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Nanotechnology, 2009, 20, 295204.
    85. L. Quan, W. Li, L. Zhu, X. Chang and H. Liu, RSC Adv., 2014, 4, 32214.
    86. K. Meng, P. K. Surolia, O. Byrne and K. R. Thampi, J. Power Sources, 2014, 248, 218.
    87. K. Zhao, H. Yu, H. Zhang and X. Zhong, J. Phys. Chem. C, 2014, 118, 5683.
    88. Z. Peng, Y. Liu, Y. Zhao, K. Chen, Y. Cheng and W. Chen, Electrochim. Acta, 2014, 135, 276.
    89. Y.-F. Xu, W.-Q. Wu, H.-S. Rao, H.-Y. Chen, D.-B. Kuang and C.-Y. Su, Nano Energy, 2015, 11, 621.
    90. C. Shen, L. Sun, Z. Y. Koh and Q. Wang, J. Mater. Chem. A, 2014, 2, 2807.
    91. H. Salaramoli, E. Maleki, Z. Shariatinia and M. Ranjbar, J. Photochem. Photobiol., A: Chem., 2013, 271, 56.
    92. G. S. Selopal, I. Concina, R. Milan, M. M. Natile, G. Sberveglieri and A. Vomiero, Nano Energy, 2014, 6, 200.
    93. M. Deng, S. Huang, Q. Zhang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Chem. Lett., 2010, 39, 1168.
    94. S. Wang, W. Dong, X. Fang, S. Zhou, J. Shao, Z. Deng, R. Tao, Q. Zhang, L. Hu and J. Zhu, Electrochim. Acta, 2015, 154, 47.
    95. Y. Jiang, X. Zhang, Q.-Q. Ge, B.-B. Yu, Y.-G. Zou, W.-J. Jiang, W.-G. Song, L.-J. Wan and J.-S. Hu, Nano Letters, 2014, 14, 365.
    96. P. K. Santra and P. V. Kamat, J. Am. Chem. Soc., 2012, 134, 2508.
    97. C. S. Kim, S. H. Choi and J. H. Bang, ACS Appl. Mater. & Inter., 2014, 6, 22078.
    98. Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu and C. Burda, J. Am. Chem. Soc., 2009, 131, 4253.
    99. F. Wang, H. Dong, J. Pan, J. Li, Q. Li and D. Xu, J. Phys. Chem. C, 2014, 118, 19589.
    100. A. D. Savariraj, K. K. Viswanathan and K. Prabakar, ACS Appl. Mater. & Inter., 2014, 6, 19702.
    101. W. Chen, M. Wang, T. Qian, H. Cao, S. Huang, Q. He, N. Liang, C. Wang and J. Zai, Nano Energy, 2015, 12, 186.
    102. M. Ye, X. Wen, N. Zhang, W. Guo, X. Liu and C. Lin, J. Mater. Chem. A, 2015, 3, 9595.
    103. Z. Yang, C.-Y. Chen, C.-W. Liu and H.-T. Chang, Chem. Commun., 2010, 46, 5485.
    104. Z. Yang, C.-Y. Chen and H.-T. Chang, Sol. Energy Mater. Sol. Cells, 2011, 95, 2867.
    105. Z. Yang, C.-Y. Chen, C.-W. Liu, C.-L. Li and H.-T. Chang, Adv. Energ. Mater., 2011, 1, 259.
    106. Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh and A. Zaban, J. Phys. Chem. C, 2011, 115, 6162.
    107. H. M. Choi, I. A. Ji and J. H. Bang, ACS Appl. Mater. & Inter., 2014, 6, 2335.
    108. F. Bo, C. Zhang, C. Wang, S. Xu, Z. Wang and Y. Cui, J. Mater. Chem. A, 2014, 2, 14585.
    109. X. Q. Chen, Z. Li, Y. Bai, Q. Sun, L. Z. Wang and S. X. Dou, Chem. Eur. J., 2015, 21, 1055.
    110. C. Ho, I. D. Raistrick and R. A. Huggins, J. Electrochem. Soc., 1980, 127,
    111. R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, Electrochim. Acta, 2002, 47, 4213.
    112. Q. Wang, J.-E. Moser and M. Grätzel, J. Phys. Chem. B, 2005, 109, 14945.

    無法下載圖示 全文公開日期 2021/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE