簡易檢索 / 詳目顯示

研究生: 黃律維
Lu-Wei Huang
論文名稱: 以甘油作為BiVO4光電及水分解反應之犧牲試劑並同時進行甘油氧化之研究
Dual function of glycerol in water splitting by BiVO4 photoanode
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 鄧熙聖
Hsi-sheng Teng
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 釩酸鉍甘油水分解
外文關鍵詞: Bismuth vanadate, glycerol, water splitting
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今社會存在著能源缺乏以及環境污染的兩大問題,有效率且無汙染地產生能源的方式相當受到關注,光電化學水分解是利用太陽光的能量進行水分解產氫產氧。本研究選用釩酸鉍作為光電極材料,於由此材料能隙小(~2.5 eV),能有效地吸收可見光,但其缺點為電子傳導性差及與水之間的反應動力學緩慢,本實驗將利用生質柴油的副產物-甘油作為犧牲試劑的角色,以甘油氧化反應取代水氧化,以減少水分解的總耗能,並同時將甘油轉化成其他更具經濟價值的產物。
    利用旋轉塗佈法將釩酸鉍沉積在FTO導電玻璃上作為光陽極,在電解液中加入甘油後能使光電流提高且起始電位前移,施加電位1.23 V vs. RHE時,在四硼酸鈉電解液中光電流密度僅有0.33 mA/cm2;而在含有2.0 M甘油的情況下可達1.28 mA/cm2,提高至3.8倍,此時電洞注入電解液的效率達140%,且利用不連續光照射下在0.7 V vs. RHE之電位觀察到甘油的存在能夠減緩電流值的衰減、改善電荷重組的情況。
    在含有0.1 M甘油的四硼酸鈉溶液中施加0.7 V vs. RHE的電位,經過三小時後電流值無明顯變化,顯示電極穩定性良好,且在產物分析結果中觀察到陰極的氫氣產量與理論值相近,但光陽極沒有氧氣的生成而是偵測到二羥基丙酮及甲酸(甘油氧化之產物),產物選擇性分別為15%及85%。


    Photoelectrochemical water splitting is using solar energy to convert water into H2 and O2. By doing so, we might be potentially to solve the two major problems, i.e. energy shortage and environmental pollution, at the same time. In this study, we use BiVO4 as photoanode, which has a relatively small band gap (~2.5 eV) and thus it can absorb sun light effectively. However, it has shortcomings of poor electron conductivity and slow water oxidation kinetics. In order to boost the overall efficiency, we use glycerol, a by-product from biodiesel manufacture, as a sacrificial agent to replace water oxidation by glycerol oxidation. As a result, hydrogen can be still produced at the cathode while at the anode, glycerol is converted into other more valuable products.
    BiVO4 film grown on FTO via a facile spin-coating method was employed as photoanode. The photocurrent density in the electrolyte with the introduction of glycerol is much higher than that without glycerol. The onset potential shifts towards less positive potentials as glycerol introduced. With 2.0 M glycerol in solution under 1.23 V vs. RHE, the hole injection yield of 140% is observed due to the Current Multiplication effect. The photocurrent density boosts to 1.28 mA/cm2 which is more than 3.8 times higher as that of 0.33 mA/cm2 for water oxidation.
    We observed good stability for BiVO4 electrode in 0.1 M glycerol solution after 3 hrs reaction at 0.7 V vs. RHE. The product analysis results show the amount of H2 detected from cathode is close to the theoretical calculation, and the main products from glycerol oxidation are formic acid and dihydroxyacetone with the selectivity of 15% and 85%, respectively.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章、緒論 1.1研究動機 1.2研究方向 第2章、文獻回顧 2.1光電化學水分解 2.1.1促進電荷分離 2.1.2改善水氧化動力學 2.1.3電流倍增效應(current doubling) 2.2可再生能源 2.2.1生質柴油 2.2.2甘油氧化 第3章、實驗設備及方法 3.1實驗架構 3.2實驗藥品、設備及分析儀器 3.3.1 BiVO4光電極薄膜製備流程 3.2.2實驗藥品 3.2.3實驗材料 3.2.4實驗設備 3.2.5分析儀器 3.3儀器分析原理 3.3.1光電化學分析方法 3.3.1.1三電極系統(three electrode system) 3.3.1.2線性掃描伏安法(linear sweep voltammetry,LSV) 3.3.1.3計時安培分析法(chronoamperometry) 3.3.1.4電化學阻抗頻譜法(electrochemical impedance spectroscopy,EIS) 3.3.1.5法拉第電解定律(Faraday’s law of electrolysis) 3.3.2紫外光/可見光光譜儀 (UV-Vis spectrometer) 3.3.3場發射掃描式電子顯微鏡 (field-emission scanning electron microscope,FESEM) 3.3.4 X光繞射儀 (X-ray Diffractometer,XRD) 3.3.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy,XPS) 3.3.6氣相層析儀(gas chromatograph,GC) 3.3.7高效能液相層析儀(high performance liquid chromatography,HPLC) 第4章、實驗結果與討論 4.1場發射掃描式電子顯微鏡(FE-SEM)分析 4.2 X光繞射(XRD)分析 4.3紫外光可見光分光光譜(UV-Vis)分析 4.4 BiVO4光電極之電化學分析 4.4.1甘油對光電化學表現的影響 4.4.2不同濃度甘油對電化學電阻之影響 4.4.3以甘油做為犧牲試劑之效果 4.5氣相產物分析 4.6液相產物分析 4.7 BiVO4光電極之穩定性討論 第5章、結論 第6章、參考文獻 附錄

    [1] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable and Sustainable Energy Reviews 11 (2007) 401-425.
    [2] S.S.M. Bhat, H.W. Jang, Recent advances in bismuth-based banomaterials for photoelectrochemical water splitting, ChemSusChem 10 (2017) 3001-3018.
    [3] R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11 (2010) 179-209.
    [4] J.Z. Zhang, Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting, MRS Bulletin 36 (2011) 48-55.
    [5] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, International Journal of Hydrogen Energy 27 (2002) 991-1022.
    [6] I.E. Paulauskas, J.E. Katz, G.E. Jellison, N.S. Lewis, L.A. Boatner, Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation, Thin Solid Films 516 (2008) 8175-8178.
    [7] J. H. Kennedy, Photooxidation of water at barium titanate electrodes, 1976.
    [8] K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe, H. Arakawa, Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light, Chemical Communications (2003).
    [9] J. Kim, T. Minegishi, J. Kobota, K. Domen, Enhanced photoelectrochemical properties of CuGa3Se5 thin films for water splitting by the hydrogen mediated co-evaporation method, Energy Environ. Sci. 5 (2012) 6368-6374.
    [10] T. Masuda, A. Zheludev, H. Kageyama, A.N. Vasiliev, BiCu2VO6: A new narrow-band spin-gap material, EPL (Europhysics Letters) 63 (2003) 757.
    [11] R. Abe, M. Higashi, K. Domen, Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation, Journal of the American Chemical Society 132 (2010) 11828-11829.
    [12] S.P. Berglund, A.J.E. Rettie, S. Hoang, C.B. Mullins, Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation, Physical Chemistry Chemical Physics 14 (2012) 7065-7075.
    [13] W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode, Energy & Environmental Science 4 (2011).
    [14] F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study, The Journal of Physical Chemistry Letters 4 (2013) 2752-2757.
    [15] S.K. Pilli, T.G. Deutsch, T.E. Furtak, L.D. Brown, J.A. Turner, A.M. Herring, BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation, Phys Chem Chem Phys 15 (2013) 3273-3278.
    [16] M. Ma, J.K. Kim, K. Zhang, X. Shi, S.J. Kim, J.H. Moon, J.H. Park, Double-deck inverse opal photoanodes: Efficient light absorption and charge separation in heterojunction, Chemistry of Materials 26 (2014) 5592-5597.
    [17] Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou, P.-C. Hsu, R. Zhang, Z. Liang, S. Fan, Y. Zhang, Y. Cui, Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells, Science Advances 2 (2016).
    [18] K.J. McDonald, K.-S. Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation, Energy & Environmental Science 5 (2012).
    [19] Y. Park, D. Kang, K.-S. Choi, Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes, Physical Chemistry Chemical Physics 16 (2014) 1238-1246.
    [20] T.H. Jeon, W. Choi, H. Park, Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes, Phys Chem Chem Phys 13 (2011) 21392-21401.
    [21] Y.R. Hong, Z. Liu, S.F. Al-Bukhari, C.J. Lee, D.L. Yung, D. Chi, T.S. Hor, Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation, Chem Commun (Camb) 47 (2011) 10653-10655.
    [22] X. Li, G. Wang, L. Jing, W. Ni, H. Yan, C. Chen, Y.M. Yan, A photoelectrochemical methanol fuel cell based on aligned TiO2 nanorods decorated graphene photoanode, Chem Commun (Camb) 52 (2016) 2533-2536.
    [23] S. Peng, Y. Li, F. Jiang, G. Lu, S. Li, Effect of Be2+ doping TiO2 on its photocatalytic activity, Chemical Physics Letters 398 (2004) 235-239.
    [24] Y. Li, G. Lu, S. Li, Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy, Chemosphere 52 (2003) 843-850.
    [25] K.-H. Ye, Z. Wang, J. Gu, S. Xiao, Y. Yuan, Y. Zhu, Y. Zhang, W. Mai, S. Yang, Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes, Energy & Environmental Science 10 (2017) 772-779.
    [26] H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S.C. Warren, Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger, Energy Environ. Sci. 4 (2011) 958-964.
    [27] S.R. Morrison, T. Freund, Chemical Role of Holes and Electrons in ZnO Photocatalysis, The Journal of Chemical Physics 47 (1967) 1543-1551.
    [28] E. Kalamaras, P. Lianos, Current Doubling effect revisited: Current multiplication in a PhotoFuelCell, Journal of Electroanalytical Chemistry 751 (2015) 37-42.
    [29] N.C. Om Tapanes, D.A. Gomes Aranda, J.W. de Mesquita Carneiro, O.A. Ceva Antunes, Transesterification of Jatropha curcas oil glycerides: Theoretical and experimental studies of biodiesel reaction, Fuel 87 (2008) 2286-2295.
    [30] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, G.J. Hutchings, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide, Chemical Communications (2002) 696-697.
    [31] Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M.T.M. Koper, Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth, ACS Catalysis 2 (2012) 759-764.
    [32] M. Simões, S. Baranton, C. Coutanceau, Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification, Applied Catalysis B: Environmental 110 (2011) 40-49.
    [33] R. Ciriminna, G. Palmisano, C.D. Pina, M. Rossi, M. Pagliaro, One-pot electrocatalytic oxidation of glycerol to DHA, Tetrahedron Letters 47 (2006) 6993-6995.
    [34] M. Besson, P. Gallezot, Selective oxidation of alcohols and aldehydes on metal catalysts, Catalysis Today 57 (2000) 127-141.
    [35] P. Fordham, M. Besson, P. Gallezot, Selective oxidation with air of glyceric to hydroxypyruvic acid and tartronic to mesoxalic acid on PtBi/C catalysts, in: H.U. Blaser, A. Baiker, R. Prins (Eds.) Studies in Surface Science and Catalysis, Elsevier1997, pp. 429-436.
    [36] H. Kimura, K. Tsuto, T. Wakisaka, Y. Kazumi, Y. Inaya, Selective oxidation of glycerol on a platinum-bismuth catalyst, Applied Catalysis A: General 96 (1993) 217-228.
    [37] M. Asgari, M.G. Maragheh, R. Davarkhah, E. Lohrasbi, A.N. Golikand, Electrocatalytic oxidation of methanol on the nickel–cobalt modified glassy carbon electrode in alkaline medium, Electrochimica Acta 59 (2012) 284-289.
    [38] M.A. Abdel Rahim, H.B. Hassan, R.M. Abdel Hamid, A systematic study on the effect of OH− and Ni2+ ions on the electro-catalytic oxidation of methanol at Ni-S-1 electrode, Journal of Power Sources 154 (2006) 59-65.
    [39] M.A. Abdel Rahim, R.M. Abdel Hameed, M.W. Khalil, Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium, Journal of Power Sources 134 (2004) 160-169.
    [40] V.L. Oliveira, C. Morais, K. Servat, T.W. Napporn, G. Tremiliosi-Filho, K.B. Kokoh, Glycerol oxidation on nickel based nanocatalysts in alkaline medium – Identification of the reaction products, Journal of Electroanalytical Chemistry 703 (2013) 56-62.
    [41] F. Lisdat, D. Schafer, The use of electrochemical impedance spectroscopy for biosensing, Anal Bioanal Chem 391 (2008) 1555-1567.
    [42] A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edition, John Wiley & Sons2000.
    [43] J.M.M. Harold M. McNair, Basic gas chromatography, John Wiley & Sons (2008).
    [44] S. Huang, Y. Xu, Z. Chen, M. Xie, H. Xu, M. He, H. Li, Q. Zhang, A core-shell structured magnetic Ag/AgBr@Fe2O3 composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium, RSC Advances 5 (2015) 71035-71045.
    [45] H.A. Abbood, K. Huang, Photocatalysis of several organic dyes by a hierarchical Ag2V4O11 micro–nanostructures, Journal of Materials Science: Materials in Electronics 29 (2018) 8068-8077.
    [46] T. Fan, C. Chen, Z. Tang, Hydrothermal synthesis of novel BiFeO3/BiVO4 heterojunctions with enhanced photocatalytic activities under visible light irradiation, RSC Advances 6 (2016) 9994-10000.
    [47] J. Wang, Analytical Electrochemistry, John Wiley & Sons (2006).
    [48] T. Numano, K. Hyodo, N. Nitta, J. Hata, N. Iwasaki, K. Homma, Apparent Diffusion Coefficient Mapping Using a Multi-Shot Spiral MRI Sequence of the Rat Brain, Open Journal of Radiology 04 (2014) 13-24.
    [49] E. Kalamaras, P. Lianos, Current Doubling effect revisited: Current multiplication in a PhotoFueCell, Journal of Electroanalytical Chemistry 751 (2015) 37-42.
    [50] T. Ohno, S. Izumi, K. Fujihara, Y. Masaki, M. Matsumura, Vanishing of Current-Doubling Effect in Photooxidation of 2-Propanol on TiO2 in Solutions Containing Fe(III) Ions, The Journal of Physical Chemistry B 104 (2000) 6801-6803.
    [51] C. Crotti, E. Farnetti, Selective oxidation of glycerol catalyzed by iron complexes, Journal of Molecular Catalysis A: Chemical 396 (2015) 353-359.
    [52] J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds, Chem Soc Rev 43 (2014) 765-778.

    無法下載圖示 全文公開日期 2023/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE