簡易檢索 / 詳目顯示

研究生: 姜欽瀚
Cin-Han Jiang
論文名稱: 利用ATRP於矽晶片表面接枝圖案化PGMA高分子刷及固定量子點之研究
Characterization of patterned PGMA brushes on silicon wafer via surface-initiated ATRP for immobilization of quantum dots
指導教授: 陳建光
Jem-Kun Chen
口試委員: 邱顯堂
Hsien-Tang Chiu
陳志堅
Jyh-Chien Chen
張棋榕
Ci-Rong Jhang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 105
中文關鍵詞: 原子轉移自由基聚合法高分子刷PGMA圖案化量子點
外文關鍵詞: PGMA
相關次數: 點閱:235下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究分為兩個部分,第一部分為高分子刷製備。包括矽晶片表面親水性處理、合成矽烷類自組裝層、固定聚合起始劑,再藉由原子轉移自由基聚合法(Atom transfer radical polymerization, ATRP)進行表面起始聚合(Surface-initiated polymerization),製備聚甲基丙烯酸缩水甘油酯(Poly(glycidyl methacrylate), PGMA)高分子刷,以不同聚合時間製備出厚度15.7至110.0nm的高分子刷。反應後以紅外光譜儀(FT-IR)及化學分析影像能譜儀(ESCA)分析表面組成,可知含有大量碳氫鍵與碳氧單/雙鍵,碳元素含量達71.68%,氧元素含量為28.04%;以原子力顯微鏡(AFM)分析表面粗糙度,ATRP前後分別為0.202nm及1.056nm。另一方面利用微影製程於空白矽晶片表面製備線型光阻,進行表面改質後,移除光阻層留下線型圖案的ATRP起始劑,再以不同的ATRP反應時間及光阻尺寸,製備出不同高度及寬度之圖案化PGMA高分子刷。以AFM進行形貌分析,最大高度達113.1nm。
      PGMA側鏈之Epoxy ring因其高活性,常被用來接上特殊功能之分子,本研究第二部分是合成量子點硫化鎘(Quantum dots, CdS),利用CdS表面親核性基團與PGMA之Epoxy group進行開環加成反應,即可製備出具螢光圖案之高分子刷。由場發射槍穿透式電子顯微鏡(FE-TEM)及光激發螢光光譜儀(PL)分析CdS後,可知粒徑為5nm,放射的螢光為578nm之橘光。接上CdS的高分子刷以ESCA進行元素分析,Cd與S的含量分別為2.68及3.79%;另一方面由雷射掃描共軛焦分光光譜顯微鏡(SCMS)進行觀測,可得到接上量子點後高分子刷之螢光圖案。


      This study consisted of two parts, the first one was the fabrication of polymer brushes on silicon wafer, including surface hydrophilic modification, the synthesis of the silane self assembly monolayer (SAM), the immobilization of the initiator of polymerization, and the polymerization of Poly(glycidyl methacrylate) brushes (PGMA) initiated from the surface of silicon wafer via atom transfer radical polymerization (ATRP). By varying the polymerization time, we achieved different thickness of PGMA brushes between 15.7 and 110.0nm. Chemical analysis by Fourier transform infrared spectroscope (FT-IR) and Electron spectroscopy for chemical analysis system (ESCA) demonstrated the surface after ATRP contained lots of C-H and C-O/C=O bonds, and the content of carbon and oxygen was 71.68% and 28.04%. Atomic force microscope (AFM) analysis showed the roughness increased from 0.202nm to 1.056nm after ATRP. Additionally, we used the linear photoresist-modified wafers fabricated by lithography to form the silane SAM, and the photoresist was removed prior to immobilize the ATRP initiator. Sequentially, we synthesized the patterned PGMA brushes with difference height and width by varying the reaction time of ATRP and the scales of the photoresist. AFM analysis showed the maximum height of linear pattern reached to 113.1nm.
      High reactivity of the epoxy ring on the PGMA side chain makes it a good position for ring-opening addition reaction. The second part of this study included the synthesis of the hydroxyl-capped Cadmium sulfide, and took it as a nucleophile to bind to the epoxy ring on PGMA. Thus, we obtained the fluorescent patterned PGMA brushes. The particle size of CdS obtained by Field emission transmission electron microscope (TEM) image was 5nm, and the 578nm emission light was analyzed by Photoluminescence spectrometry (PL). ESCA analysis showed the content of cadmium and sulfur was 2.68% and 3.79% from the CdS-PGMA brushes. Finally, Spectral confocal and multiphoton system (SCMS) imaged the different width fluorescent patterns, and demonstrated CdS was bound to the patterned PGMA brushes.

    摘 要I AbstractIII 目 錄V 圖目錄VIII 表目錄XII 第一章 前言1 1.1 研究背景1 1.2 研究目的2 第二章 理論與文獻回顧3 2.1 高分子刷簡介3 2.2 自組裝單分子層6 2.3 原子轉移自由基聚合法8 2.4 液體除氣簡介12 2.5 聚甲基丙烯酸缩水甘油酯(PGMA)簡介13 2.6 微影製程技術14 2.7 量子點簡介17 2.8 原子力顯微鏡簡介20 2.9 化學分析影像能譜儀簡介23 2.10 共軛焦顯微鏡簡介24 第三章 實驗流程與方法26 3.1 實驗流程圖26 3.2 實驗藥品27 3.3 實驗儀器30 3.4 實驗步驟33 3.4.1 製備無水溶劑33 3.4.2矽晶片表面起始聚合PGMA高分子刷33 3.4.3 微影製程製備具圖案化光阻層37 3.4.4 矽晶片表面起始聚合圖案化PGMA高分子刷41 3.4.5 量子點CdS之合成44 3.4.6 製備螢光圖案高分子刷45 第四章 結果與討論47 4.1量子點CdS之合成結果分析47 4.2 矽晶片表面製備高分子刷之化學分析51 4.2.1 FT-IR光譜分析52 4.2.2 ESCA化學能譜分析54 4.2.3 表面親疏水性分析62 4.3 高分子刷表面形貌分析63 4.3.1 APTES表面自組裝層64 4.3.2 PGMA高分子刷68 4.4圖案化高分子刷之形貌分析71 4.4.1 微影製程製備圖案化光阻71 4.4.2 圖案化APTES自組裝層73 4.4.3 圖案化PGMA高分子刷76 4.5 螢光圖案高分子刷84 第五章 結論87 參考文獻88

    [1]J. Ruhe, M. Ballauff, M. Biesalski, P. Dziezok, F. Grohn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, Polyelectrolytes with Defined Molecular Architecture I 2004, 189-198.
    [2]P. De Gennes, Macromolecules 1980, 13, 1069-1075.
    [3]P. De Gennes, Journal De Physique 1976, 37, 1445-1452.
    [4]S. Alexander, Journal de Physique 1977, 38, 977-981.
    [5]B. Zhao, W. J. Brittain, Progress in Polymer Science 2000, 25, 677-710.
    [6]S. Milner, Science 1991, 251, 905-914.
    [7]M. Ejaz, Y. Tsujii, T. Fukuda, Polymer 2001, 42, 6811-6815.
    [8]M. Biesalski, J. Ruhe, Macromolecules 1999, 32, 2309-2316.
    [9]M. Biesalski, J. Ruhe, Langmuir 2000, 16, 1943-1950.
    [10]A. Kopf, J. Baschnagel, J. Wittmer, K. Binder, Macromolecules 1996, 29, 1433-1441.
    [11]R. Zajac, A. Chakrabarti, Physical Review E 1995, 52, 6536.
    [12]B. Zhao, W. J. Brittain, Macromolecules 2000, 33, 342-348.
    [13]W. Bigelow, D. Pickett, W. Zisman, Journal of Colloid Science 1946, 1, 513-538.
    [14]H. Kuhn, D. Mobius, H. Bucher, Techniques of Chemistry 1972, 1, 577.
    [15]R. G. Nuzzo, D. L. Allara, Journal of the American Chemical Society 1983, 105, 4481-4483.
    [16]P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, R. G. Nuzzo, Journal of the American Chemical Society 1991, 113, 7152-7167.
    [17]D. Gopireddy, S. M. Husson, Macromolecules 2002, 35, 4218-4221.
    [18]R. Yamada, H. Wano, K. Uosaki, Langmuir 2000, 16, 5523-5525.
    [19]E. Delamarche, B. Michel, H. Kang, C. Gerber, Langmuir 1994, 10, 4103-4108.
    [20]J. A. Howarter, J. P. Youngblood, Langmuir 2006, 22, 11142-11147.
    [21]A. Simon, T. Cohen-Bouhacina, M. Porte, J. Aime, C. Baquey, Journal of colloid and interface science 2002, 251, 278-283.

    [22]K. Matyjaszewski, J. Xia, Chemical Reviews-Columbus 2001, 101, 2921-2990.
    [23]J. S. Wang, K. Matyjaszewski, Journal of the American Chemical Society 1995, 117, 5614-5615.
    [24]J. S. Wang, K. Matyjaszewski, Macromolecules 1995, 28, 7901-7910.
    [25]T. E. Patten, J. Xia, T. Abernathy, K. Matyjaszewski, Science 1996, 272, 866-868.
    [26]J. Pyun, K. Matyjaszewski, Chemistry of materials 2001, 13, 3436-3448.
    [27]K. Matyjaszewski, Y. Nakagawa, S. G. Gaynor, Macromolecular rapid communications 1997, 18, 1057-1066.
    [28]K. Matyjaszewski, M. Wei, J. Xia, N. E. McDermott, Macromolecules 1997, 30, 8161-8164.
    [29]G. Masci, L. Giacomelli, V. Crescenzi, Macromolecular rapid communications 2004, 25, 559-564.
    [30]W. L. F. Armarego, C. L. L. Chai, Purification of laboratory chemicals, Butterworth Heinemann, 2009.
    [31]F. Xu, Z. Wang, W. Yang, Biomaterials 2010, 31, 3139-3147.
    [32]S. Edmondson, W. T. S. Huck, J. Mater. Chem. 2004, 14, 730-734.
    [33]X. Lian, D. Wu, X. Song, H. Zhao, Macromolecules 2010, 43, 7434-7445.
    [34]G. Fu, L. Xu, F. Yao, K. Zhang, X. Wang, M. Zhu, S. Nie, ACS Applied Materials & Interfaces 2009, 1, 239-243.
    [35]A. Genua, J. Alduncin, J. Pomposo, H. Grande, N. Kehagias, V. Reboud, C. Sotomayor, I. Mondragon, D. Mecerreyes, Nanotechnology 2007, 18, 215301.
    [36]M. Husemann, M. Morrison, D. Benoit, J. Frommer, C. M. Mate, W. D. Hinsberg, J. L. Hedrick, C. J. Hawker, Journal of the American Chemical Society 2000, 122, 1844-1845.
    [37]F. Xu, Y. Song, Z. Cheng, X. Zhu, C. Zhu, E. Kang, K. Neoh, Macromolecules 2005, 38, 6254-6258.
    [38]F. Zhou, L. Jiang, W. Liu, Q. Xue, Macromolecular rapid communications 2004, 25, 1979-1983.
    [39]R. Dong, S. Krishnan, B. A. Baird, M. Lindau, C. K. Ober, Biomacromolecules 2007, 8, 3082-3092.
    [40]R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott, C. J. Hawker, J. L. Hedrick, Macromolecules 2000, 33, 597-605.
    [41]T. Takagahara, K. Takeda, Physical Review B 1992, 46, 15578.
    [42]T. Teranishi, M. Nishida, M. Kanehara, Chemistry Letters 2005, 34, 1004-1005.
    [43]C. Murray, D. Norris, M. G. Bawendi, Journal of the American Chemical Society 1993, 115, 8706-8715.
    [44]A. Mews, A. Eychmuller, M. Giersig, D. Schooss, H. Weller, The Journal of Physical Chemistry 1994, 98, 934-941.
    [45]M. A. Hines, P. Guyot-Sionnest, The Journal of Physical Chemistry 1996, 100, 468-471.
    [46]Z. A. Peng, X. Peng, Journal of the American Chemical Society 2001, 123, 183-184.
    [47]G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Physical review letters 1982, 49, 57-61.
    [48]G. Binnig, C. F. Quate, C. Gerber, Physical review letters 1986, 56, 930-933.
    [49]W. Yu, E. Kang, K. Neoh, Langmuir 2004, 20, 8294-8300.
    [50]S. Chen, J. Zhu, Y. Shen, C. Hu, L. Chen, Langmuir 2007, 23, 850-854.
    [51]G. Steimecke, H. J. Sieler, R. Kirmse, E. Hoyer, Phosphorus and Sulfur and the Related Elements 1979, 7, 49-55.
    [52]NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/.
    [53]R. Barbey, H.-A. Klok, Langmuir 2010, 26, 18219-18230.
    [54]G. Beamson, D. Briggs, High Resolution XPS of organic polymers, The Scienta ESCA 300 database John Wiley & Sons, Vol. 15, 1992.
    [55]J. Kim, P. Seidler, L. S. Wan, C. Fill, Journal of colloid and interface science 2009, 329, 114-119.
    [56]J. Kim, P. Seidler, C. Fill, L. S. Wan, Surface Science 2008, 602, 3323-3330.
    [57]T. Aida, Progress in Polymer Science 1994, 19, 469-528.
    [58]S. Lenci, L. Tedeschi, C. Domenici, C. Lande, A. Nannini, G. Pennelli, F. Pieri, S. Severi, Materials Science and Engineering: C 2010, 30, 1221-1226.
    [59]S. Lenci, L. Tedeschi, F. Pieri, C. Domenici, Applied Surface Science 2011, 257, 8413-8419.

    QR CODE