簡易檢索 / 詳目顯示

研究生: 黎昆祐
Kun-You Li
論文名稱: 全色域無機鈣鈦礦量子點/奈米纖維素晶體螢光複合膜
Full-Color Inorganic Perovskite Quantum Dots/Cellulose Nanocrystals Hybrid Films
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 邱昱誠
Yu-Cheng Chiu
王立義
Lee-Yih Wang
陳學仕
Hsueh-Shih Chen
郭霽慶
Chi-Ching Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 76
中文關鍵詞: 奈米纖維素晶體鈣鈦礦量子點鋅摻雜穩定性
外文關鍵詞: cellulose nanocrystals, perovskites, quantum dots, zinc-alloyed, stability
相關次數: 點閱:319下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全無機鈣鈦礦量子點擁有純粹的放光特性以及全可見光的光調變性,因此適合作為開發無鎘的量子點發光二極體元件的材料。然而,鈣鈦礦量子點還是受到穩定性的影響而限制其應用範圍。本研究利用含有較強束縛能的硫酸根奈米纖維素晶體來取代傳統的油酸及油胺配體,合成出紅、綠、藍三種螢光增強複合膜。為了進一步加強紅色螢光膜的穩定性,本研究在CsPbI3量子點中摻雜鋅離子,結果顯示經過摻雜後的紅色螢光複合膜在大氣環境中經過33天後還能保有93%的螢光強度,而未摻雜鋅離子的螢光複合膜及有摻雜鋅離子的傳統膠體溶液經過一個小時後僅剩下50%左右的螢光強度。綜合以上所述,鈣鈦礦量子點螢光複合膜擁有高穩定性、放光波長窄、全色域等的特點,為下個世代低成本、低耗能的鈣鈦礦量子點光電元件提供了新的可能性。


    All-inorganic perovskite quantum dots (PQDs) have held significant promise for developing cadmium-free light-emitting devices due to their outstanding color purity and tunable bandgap throughout the visible spectrum. However, they are still limited in practical applications due to stability issues. Herein, a strategy is developed to replace traditional ligands such as oleylamine and oleic acid for improving the binding state between exposed Pb ions and ligands by sulfate-functionalized cellulose nanocrystals (CNCs) to synthesize red, green, and blue-emitting PQD/CNC light enhancement films. To further increase the stability of red-emitting films, Zn metal ions were introduced in the B-cation site of CsPbI3. It has been noticed that the relative photoluminescence emission intensity of the Zn-alloyed CsPbI3 PQD/CNC film can be maintained at 93% under the ambient condition for 33 days, whereas that of both the un-alloyed film and colloidal Zn-alloyed CsPbI3 dropped to ~50% after 1 hour. Thus, the developed PQD/CNC enhancement films can provide a new possibility for highly-stable and full-color applications in the next-generation low-cost, low power consumption, and efficient PQD based optoelectronic devices.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XI 第 1 章 緒論 1 1.1 前言 1 1.1.1 量子點之特性 1 1.1.2 量子點材料介紹 3 1.1.3 鈣鈦礦材料及鈣鈦礦量子點介紹 5 1.1.4 奈米纖維素晶體介紹 10 1.2 研究動機與目的 12 第 2 章 文獻回顧與探討 13 2.1 鈣鈦礦量子點之穩定性 13 2.1.1 結構穩定性 13 2.1.2 熱穩定性 14 2.1.3 表面穩定性 14 2.1.4 光穩定性 15 2.1.5 氧穩定性 16 2.1.6 水穩定性 17 2.2 無機鈣鈦礦量子點之元素摻雜 18 2.2.1 X位摻雜與取代 19 2.2.2 A位摻雜與取代 20 2.2.3 B位摻雜與取代 21 第 3 章 實驗方法 31 3.1 實驗流程 31 3.2 實驗藥品、實驗設備與分析儀器 31 3.2.1 實驗藥品 31 3.2.2 實驗設備 32 3.2.3 分析儀器 33 3.3 鈣鈦礦量子點/奈米纖維素晶體螢光複合膜之合成 36 3.3.1 奈米纖維素晶體溶液製備與奈米纖維素晶體膜合成 37 3.3.2 CsPbCl1.5Br1.5鈣鈦礦量子點前驅液製備與螢光複合膜合成 37 3.3.3 CsPbBr3鈣鈦礦量子點前驅液製備與螢光複合膜合成 38 3.3.4 CsPbxZn1-xI3鈣鈦礦量子點前驅液製備與螢光複合膜合成 38 3.4 膠體鈣鈦礦量子點之合成―配體輔助再析出法(LARP) 39 3.5 紅色螢光複合膜穩定性測試 39 第 4 章 結果與討論 40 4.1 奈米纖維素於鈣鈦礦量子點之作用 40 4.2 三原色鈣鈦礦量子點螢光複合膜之光學分析 41 4.3 三原色鈣鈦礦量子點螢光複合膜之結構與形貌分析 43 4.4 CIE 1931與白光LED元件色彩分析 46 4.5 紅色鈣鈦礦量子點螢光複合膜之光學分析 47 4.6 紅色鈣鈦礦量子點螢光複合膜形貌與組成分析 49 4.7 紅色鈣鈦礦量子點之穩定性測試 50 第 5 章 結論與未來展望 54 5.1 結論 54 5.2 未來展望 55 參考文獻 56

    [1] E. Roduner, "Size Matters: Why Nanomaterials Are Different," Chemical Society Reviews, vol. 35, no. 7, pp. 583-592, 2006.
    [2] A. C. Berends and C. de Mello Donega, "Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit," The Journal of Physical Chemistry Letters, vol. 8, no. 17, pp. 4077-4090, 2017.
    [3] Y. Wang and A. Hu, "Carbon Quantum Dots: Synthesis, Properties and Applications," Journal of Materials Chemistry C, vol. 2, no. 34, pp. 6921-6939, 2014.
    [4] J. Wu, J. Dai, Y. Shao, and Y. Sun, "One-Step Synthesis of Fluorescent Silicon Quantum Dots (Si-QDs) and Their Application for Cell Imaging," RSC Advances, vol. 5, no. 102, pp. 83581-83587, 2015.
    [5] J. Park and S.-W. Kim, "CuInS2/ZnS Core/Shell Quantum Dots by Cation Exchange and Their Blue-Shifted Photoluminescence," Journal of Materials Chemistry, vol. 21, no. 11, pp. 3745-3750, 2011.
    [6] Y. Wei, Z. Cheng, and J. Lin, "An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted LEDs," Chemical Society Reviews, vol. 48, no. 1, pp. 310-350, 2019.
    [7] X. Li et al., "CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes," Advanced Functional Materials, vol. 26, no. 15, pp. 2435-2445, 2016.
    [8] L. Protesescu et al., "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Letters, vol. 15, no. 6, pp. 3692-3696, 2015.
    [9] G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, "Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)," Nano Letters, vol. 15, no. 8, pp. 5635-5640, 2015.
    [10] Q. Zhao et al., "Size-Dependent Lattice Structure and Confinement Properties in CsPbI3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization," ACS Energy Letters, vol. 5, no. 1, pp. 238-247, 2020.
    [11] T. Erdem and H. V. Demir, "Color Science of Nanocrystal Quantum Dots for Lighting and Displays," Nanophotonics, vol. 2, no. 1, pp. 57-81, 2013.
    [12] H.-C. Wang, Z. Bao, H.-Y. Tsai, A.-C. Tang, and R.-S. Liu, "Perovskite Quantum Dots and Their Application in Light-Emitting Diodes," Small, vol. 14, no. 1, p. 1702433, 2018.
    [13] Q. A. Akkerman, G. Rainò, M. V. Kovalenko, and L. Manna, "Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals," Nature Materials, vol. 17, no. 5, pp. 394-405, 2018.
    [14] D. Miyashiro, R. Hamano, and K. Umemura, "A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes," Nanomaterials, vol. 10, no. 2, 2020.
    [15] H. Wang, G. Gurau, and R. D. Rogers, "Ionic Liquid Processing of Cellulose," Chemical Society Reviews, vol. 41, no. 4, pp. 1519-1537, 2012.
    [16] M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, and A. K. Mohanty, "Biobased Plastics and Bionanocomposites: Current Status and Future Opportunities," Progress in Polymer Science, vol. 38, no. 10, pp. 1653-1689, 2013.
    [17] E. Lam, K. B. Male, J. H. Chong, A. C. W. Leung, and J. H. T. Luong, "Applications of Functionalized and Nanoparticle-Modified Nanocrystalline Cellulose," Trends in Biotechnology, vol. 30, no. 5, pp. 283-290, 2012.
    [18] R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," vol. 32, no. 5, pp. 751-767, 1976.
    [19] C. C. Stoumpos and M. G. Kanatzidis, "The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors," Accounts of Chemical Research, vol. 48, no. 10, pp. 2791-2802, 2015.
    [20] D. S. Tsvetkov, M. O. Mazurin, V. V. Sereda, I. L. Ivanov, D. A. Malyshkin, and A. Y. Zuev, "Formation Thermodynamics, Stability, and Decomposition Pathways of CsPbX3 (X = Cl, Br, I) Photovoltaic Materials," The Journal of Physical Chemistry C, vol. 124, no. 7, pp. 4252-4260, 2020.
    [21] B. T. Diroll, G. Nedelcu, M. V. Kovalenko, and R. D. Schaller, "High-Temperature Photoluminescence of CsPbX3 (X = Cl, Br, I) Nanocrystals," vol. 27, no. 21, p. 1606750, 2017.
    [22] M. Lu et al., "Surface Ligand Engineering-Assisted CsPbI3 Quantum Dots Enable Bright and Efficient Red Light-Emitting Diodes with a Top-Emitting Structure," Chemical Engineering Journal, vol. 404, p. 126563, 2021.
    [23] G. Li, J. Huang, H. Zhu, Y. Li, J.-X. Tang, and Y. Jiang, "Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs," Chemistry of Materials, vol. 30, no. 17, pp. 6099-6107, 2018.
    [24] J. Pan et al., "Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes," Journal of the American Chemical Society, vol. 140, no. 2, pp. 562-565, 2018.
    [25] C. Bi, S. V. Kershaw, A. L. Rogach, and J. Tian, "Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol," Advanced Functional Materials, vol. 29, no. 29, p. 1902446, 2019.
    [26] K. Chen et al., "Short-Chain Ligand-Passivated Stable α-CsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells," Advanced Functional Materials, vol. 29, no. 24, p. 1900991, 2019.
    [27] J. Chen, D. Liu, M. J. Al-Marri, L. Nuuttila, H. Lehtivuori, and K. Zheng, "Photo-Stability of CsPbBr3 Perovskite Quantum Dots for Optoelectronic Application," Science China Materials, vol. 59, no. 9, pp. 719-727, 2016.
    [28] E. Moyen, A. Kanwat, S. Cho, H. Jun, R. Aad, and J. Jang, "Ligand Removal and Photo-Activation of CsPbBr3 Quantum Dots for Enhanced Optoelectronic Devices," Nanoscale, vol. 10, no. 18, pp. 8591-8599, 2018.
    [29] S. Seth, N. Mondal, S. Patra, and A. Samanta, "Fluorescence Blinking and Photoactivation of All-Inorganic Perovskite Nanocrystals CsPbBr3 and CsPbBr2I," The Journal of Physical Chemistry Letters, vol. 7, no. 2, pp. 266-271, 2016.
    [30] Y. Tian et al., "Mechanistic Insights into Perovskite Photoluminescence Enhancement: Light Curing with Oxygen Can Boost Yield Thousandfold," Physical Chemistry Chemical Physics, vol. 17, no. 38, pp. 24978-24987, 2015.
    [31] R. An et al., "Photostability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots," ACS Applied Materials & Interfaces, vol. 10, no. 45, pp. 39222-39227, 2018.
    [32] Z. Shangguan et al., "The Stability of Metal Halide Perovskite Nanocrystals—A Key Issue for the Application on Quantum-Dot-Based Micro Light-Emitting Diodes Display," Nanomaterials, vol. 10, no. 7, 2020.
    [33] Y. Wang et al., "Switching Excitonic Recombination and Carrier Trapping in Cesium Lead Halide Perovskites by Air," Communications Physics, vol. 1, no. 1, p. 96, 2018.
    [34] L. Liu et al., "Photodegradation of Organometal Hybrid Perovskite Nanocrystals: Clarifying the Role of Oxygen by Single-Dot Photoluminescence," The Journal of Physical Chemistry Letters, vol. 10, no. 4, pp. 864-869, 2019.
    [35] T. Xuan et al., "Super-Hydrophobic Cesium Lead Halide Perovskite Quantum Dot-Polymer Composites with High Stability and Luminescent Efficiency for Wide Color Gamut White Light-Emitting Diodes," Chemistry of Materials, vol. 31, no. 3, pp. 1042-1047, 2019.
    [36] G. Yuan, C. Ritchie, M. Ritter, S. Murphy, D. E. Gómez, and P. Mulvaney, "The Degradation and Blinking of Single CsPbI3 Perovskite Quantum Dots," The Journal of Physical Chemistry C, vol. 122, no. 25, pp. 13407-13415, 2018.
    [37] J. A. Steele et al., "Thermal Unequilibrium of Strained Black CsPbI3 Thin Films," Science, vol. 365, no. 6454, pp. 679-684, 2019.
    [38] P. V. Kamat and M. Kuno, "Halide Ion Migration in Perovskite Nanocrystals and Nanostructures," Accounts of Chemical Research, vol. 54, no. 3, pp. 520-531, 2021.
    [39] D. M. Jang, D. H. Kim, K. Park, J. Park, J. W. Lee, and J. K. Song, "Ultrasound Synthesis of Lead Halide Perovskite Nanocrystals," Journal of Materials Chemistry C, vol. 4, no. 45, pp. 10625-10629, 2016.
    [40] D. Chen, X. Chen, Z. Wan, and G. Fang, "Full-Spectral Fine-Tuning Visible Emissions from Cation Hybrid Cs1-mFAmPbX3 (X = Cl, Br, and I, 0 ≤ m ≤ 1) Quantum Dots," ACS Applied Materials & Interfaces, vol. 9, no. 24, pp. 20671-20678, 2017.
    [41] E. M. Sanehira et al., " Enhanced Mobility CsPbI3 Quantum Dot Arrays for Record-Efficiency, High-Voltage Photovoltaic Cells," Science Advances, vol. 3, no. 10, p. eaao4204, 2017.
    [42] M. Saliba et al., "Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance" Science, vol. 354, no. 6309, p. 206, 2016.
    [43] L. K. Ono, E. J. Juarez-Perez, and Y. Qi, "Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions," ACS Applied Materials & Interfaces, vol. 9, no. 36, pp. 30197-30246, 2017.
    [44] Y. H. Park et al., "Inorganic Rubidium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH2)2PbI3 Perovskite Solar Cells," Advanced Functional Materials, vol. 27, no. 16, p. 1605988, 2017.
    [45] C. Li et al., "Emerging Alkali Metal Ion (Li+, Na+, K+ and Rb+) Doped Perovskite Films for Efficient Solar Cells: Recent Advances and Prospects," Journal of Materials Chemistry vol. 7, no. 42, pp. 24150-24163, 2019.
    [46] M. Abdi-Jalebi et al., "Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation," Nature, vol. 555, no. 7697, pp. 497-501, 2018.
    [47] G. Shao, S. Liu, L. Ding, Z. Zhang, W. Xiang, and X. Liang, "KxCs1-xPbBr3 NCs Glasses Possessing Super Optical Properties and Stability for White Light Emitting Diodes," Chemical Engineering Journal, vol. 375, p. 122031, 2019.
    [48] Z. Fang et al., "Bandgap Alignment of α-CsPbI3 Perovskites with Synergistically Enhanced Stability and Optical Performance via B-Site Minor Doping," Nano Energy, vol. 61, pp. 389-396, 2019.
    [49] A. Swarnkar, W. J. Mir, and A. Nag, "Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites?," ACS Energy Letters, vol. 3, no. 2, pp. 286-289, 2018.
    [50] F. Liu et al., "Colloidal Synthesis of Air-Stable Alloyed CsSn1–xPbxI3 Perovskite Nanocrystals for Use in Solar Cells," Journal of the American Chemical Society, vol. 139, no. 46, pp. 16708-16719, 2017.
    [51] T. C. Jellicoe et al., "Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals," Journal of the American Chemical Society, vol. 138, no. 9, pp. 2941-2944, 2016.
    [52] S. Zou et al., "Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes," Journal of the American Chemical Society, vol. 139, no. 33, pp. 11443-11450, 2017.
    [53] W. J. Mir, A. Swarnkar, and A. Nag, "Postsynthesis Mn-doping in CsPbI3 Nanocrystals to Stabilize the Black Perovskite Phase," Nanoscale, vol. 11, no. 10, pp. 4278-4286, 2019.
    [54] Q. A. Akkerman, D. Meggiolaro, Z. Dang, F. De Angelis, and L. Manna, "Fluorescent Alloy CsPbxMn1–xI3 Perovskite Nanocrystals with High Structural and Optical Stability," ACS Energy Letters, vol. 2, no. 9, pp. 2183-2186, 2017.
    [55] W. Liu et al., "Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content," Journal of the American Chemical Society, vol. 138, no. 45, pp. 14954-14961, 2016.
    [56] L. Zhang et al., "All-Inorganic CsPbI3 Quantum Dot Solar Cells with Efficiency over 16% by Defect Control," vol. 31, no. 4, p. 2005930, 2021.
    [57] X. Shen et al., "Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices," Nano Letters, vol. 19, no. 3, pp. 1552-1559, 2019.
    [58] S. Thapa, G. C. Adhikari, H. Zhu, A. Grigoriev, and P. Zhu, "Zn-Alloyed All-Inorganic Halide Perovskite-Based White Light-Emitting Diodes with Superior Color Quality," Scientific Reports, vol. 9, no. 1, p. 18636, 2019.
    [59] S. Bera, D. Ghosh, A. Dutta, S. Bhattacharyya, S. Chakraborty, and N. Pradhan, "Limiting Heterovalent B-Site Doping in CsPbI3 Nanocrystals: Phase and Optical Stability," ACS Energy Letters, vol. 4, no. 6, pp. 1364-1369, 2019.
    [60] J. Shi et al., "Efficient and Stable CsPbI3 Perovskite Quantum Dots Enabled by In Situ Ytterbium Doping for Photovoltaic Applications," Journal of Materials Chemistry A, vol. 7, no. 36, pp. 20936-20944, 2019.
    [61] G. Pan et al., "Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties," Nano Letters, vol. 17, no. 12, pp. 8005-8011, 2017.
    [62] Y. Wang et al., "Ultrastable, Highly Luminescent Organic–Inorganic Perovskite–Polymer Composite Films," Advanced Materials, vol. 28, no. 48, pp. 10710-10717, 2016.
    [63] H. Wang et al., "Emission Recovery and Stability Enhancement of Inorganic Perovskite Quantum Dots," The Journal of Physical Chemistry Letters, vol. 9, no. 15, pp. 4166-4173, 2018.
    [64] C. Lu et al., "Enhanced Stabilization of Inorganic Cesium Lead Triiodide (CsPbI3) Perovskite Quantum Dots with Tri-Octylphosphine," Nano Research, vol. 11, no. 2, pp. 762-768, 2018.
    [65] S. Liu, Y. Luo, M. He, X. Liang, and W. Xiang, "Novel CsPbI3 QDs Glass with Chemical Stability and Optical Properties," Journal of the European Ceramic Society, vol. 38, no. 4, pp. 1998-2004, 2018.
    [66] J.-S. Yao et al., "Few-Nanometer-Sized α-CsPbI3 Quantum Dots Enabled by Strontium Substitution and Iodide Passivation for Efficient Red-Light Emitting Diodes," Journal of the American Chemical Society, vol. 141, no. 5, pp. 2069-2079, 2019.

    無法下載圖示 全文公開日期 2026/07/01 (校內網路)
    全文公開日期 2026/07/01 (校外網路)
    全文公開日期 2026/07/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE