簡易檢索 / 詳目顯示

研究生: 邱彥翔
Yan-Shiang Ciou
論文名稱: 軸向移動黏彈性平板受邊緣非均布激振力的動態穩定性研究
Dynamic Stability of Axially Moving Viscoelastic Plates Under Nonuniform Edge Excitations
指導教授: 楊條和
Tyau-Her Young
口試委員: 蕭庭郎
T. N. Shiau
徐茂濱
Mau-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 171
中文關鍵詞: 移動平板動態穩定性邊緣激振力多尺度擾動紐馬克數值分析法
外文關鍵詞: moving plate, dynamic stability, edge excitations, multiple scales, Newmark's method
相關次數: 點閱:254下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,對產品品質及生產效率的要求也跟著提高。對軸向移動結構而言,生產效率之提升有賴於移動速度之提升,但較高的移動速度會衍生更多且更嚴重的振動問題,因此探討移動速度與張力對軸向移動結構的振動及穩定性之影響是有必要的。
    本文研究軸向移動黏彈性平板受邊緣非均布激振力的動態穩定性。文中假設材料特性遵守凱爾文-福格特模型,平板在兩對邊為簡支撐端,另外兩對邊為自由端,平板在簡支撐端受到邊緣非均布激振力。本研究先探討平板在平面內之振動,再探討平板在平面外振動及穩定性。平板在平面內振動時,先利用漢米爾頓原理推導出平面內的運動方程式,並使用延伸的里茲法將方程式離散化,接著計算移動平板在平面內的自然頻率與模態,最後再求得平板受非均布激振力的響應與應力分布。平板在平面外振動時,先將求得的應力代入側向振動的運動方程式,並利用葛樂金法得到離散化的運動方程式,再求得側向振動的自然頻率與模態,接著利用模態分析法將運動方程式部分解耦,最後使用多尺度擾動法求得平板在週期激振力下的穩定邊界,並利用紐馬克數值積分法從暫態響應中,得到平板的穩定邊界。之後利用分析所得結果進行數值計算,並探討各參數對系統的自然頻率、響應及穩定性之影響。
    數值結果顯示,在平面內振動隨著長寬比降低其臨界速度會增加,而顫動型不穩定會在臨界速度前發生。而在側向振動中,移動平板受到橫向對稱型式的激振力時,受力區域越集中,不穩定區域往低頻移動。


    Dynamic Stability of Axially Moving Viscoelastic Plates Under Nonuniform Edge Excitations are investigated in this thesis. Assume that the material property of the plate obeys the Kelvin - Voigt model, and the excitations are arbitrarily distributed on two opposite simply-supported edges. This paper investigates the in-plane vibration of the plate first, and then investigates the out-of-plane vibration and the dynamic stability of the plate. For the in-plane vibration of the plate, the equations of the in-plane motion are first derived by Hamilton’s principle. Next, the extended Ritz method is used to obtain discretized system equations. Then, the natural frequencies and the mode shapes of the in-plane vibration of the axially moving plate are calculated. Finally, the displacements and the stress distributions of the plate subjected to nonuniform excitations are obtained. For the out-of-plane vibration of the plate, apply the stress distributions obtained previously to the equation of the out-of-plane motion of the plate, and the equation is discretized by generalized Galerkin’s method. Next, the natural frequencies and the mode shapes of the out-of-plane vibration of the plate are calculated. Then, a modal analysis method is used to partially uncouple the discretized system equations. Finally, the method of multiple scales is employed to determine the stability boundaries of the plate, and Newmark’s method is used to obtain the stability boundaries of plate from the transient responses of the plate. Numerical results are presented for the natural frequencies, response and stability of the plate under different system parameters.
    Numerical results show that, as the aspect ratio increases, the critical speed of in-plane vibration of the moving plate decreases, and flutter instability occurs before the first critical speed is reached. In the out-of-plane vibration, when the moving plate is subjected to excitation forces symmetrically distributed in the transverse direction, the unstable regions move toward the low frequency range as the area of application becomes narrower.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖表索引 VI 符號索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 8 第二章 軸向移動平板之平面內振動 10 2.1 平面內運動方程式之推導 10 2.2 運動方程式之離散化 13 2.3 模態分析 15 2.4 強迫振動 17 第三章 軸向移動平板之側向振動與穩定性分析 21 3.1 側向運動方程式之推導 21 3.2 運動方程式之離散化 23 3.3 模態分析 25 3.4 擾動分析 28 3.4.1 擾動頻率βΩ遠離ω_p±ω_q之動態特性 30 3.4.2 擾動頻率βΩ接近ω_p+ω_q之動態特性 32 3.4.3 擾動頻率βΩ接近ω_p-ω_q之動態特性 34 3.5 暫態響應分析 35 第四章 數值結果與討論 38 4.1 平面內自由振動與臨界速度 38 4.2 平面內的強迫振動 40 4.3 側向振動之自然頻率與臨界速度 44 4.4 穩定邊界與暫態響應 47 第五章 結論與未來展望 146 5.1 結論 146 5.2 未來展望 148 參考文獻 149

    [1] R. F. Fung, J. S. Huang, Y. C. Chen, "The transient amplitude of the viscoelastic travelling string: An integral constitutive law," Journal of Sound and Vibration, vol. 201, pp. 153-167, 1997.
    [2] L. Q. Chen, W. J. Zhao, J. W. Zu, "Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law," Journal of Sound and Vibration, vol. 278, pp. 861-871, 2004.
    [3] L. Q. Chen, H. Chen, C. W. Lim, "Asymptotic analysis of axially accelerating viscoelastic string," International Journal of Engineering Science, vol. 46, pp. 976-985, 2008.
    [4] J. A. Wickert, "Non-linear vibration of a traveling tensioned beam," Int. J. Non-Linear Mechanics, vol. 27, pp. 503-517, 1992.
    [5] L. Q. Chen, X. D. Yang, "Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models," International Journal of Solids and structures, vol. 42, pp. 37-50, 2005.
    [6] L. Q. Chen, Y. Q. Tang, C. W. Lim, "Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams," Journal of Sound and Vibration, vol. 329, pp. 547-565, 2010.
    [7] K. Marynowski, "Non-linear vibration of an axially moving viscoelastic web with time-dependent tension," Chaos, Solitons & Fractals, vol. 21, pp. 481-490, 2004.
    [8] C. Shin, W. Kim, J. Chung, "Free in-plane vibration of an axially moving membrane," Journal of Sound and Vibration, vol. 272, pp. 137–154, 2004.
    [9] C. Shin, J. Chung, W. Kim, "Dynamic characteristics of the out-of-plane vibration for an axially moving membrane," Journal of Sound and Vibration, vol. 286, pp. 1019–1031, 2005.
    [10] C. Shin, J. Chung, H. H. Yoo, "Dynamic responses of the in-plane and out-of-plane vibrations for an axially moving membrane," Journal of Sound and Vibration, vol. 297, pp. 794–809, 2006.
    [11] N. S. Bardell, R. S. Langley, J. M. Dunsdon, "On the free in-plane vibration of isotropic rectangular plates," Journal of Sound and Vibration, vol. 191, pp. 459–467, 1996.
    [12] K. Hyde, J. Y. Chang, C. Bacca, J. A. Wickert, "Parameter studies for plane stress in-plane vibration of rectangular plates," Journal of Sound and Vibration, vol. 247, pp. 471–487, 2001.
    [13] Y. F. Xing, B. Liu, "Excat solutions for the free in-plane vibrations of rectangular plates," International Journal of Mechanical Sciences, vol. 51, pp. 246–255, 2009.
    [14] B. Liu, Y. F. Xing, "Comprehensive exact solutions for free in-plane vibrations of orthotropic rectangular plates," European Journal of Mechanics A/Solids, vol. 30, pp. 383–395, 2011.
    [15] S. Srinivas, A. K. Rao, "An exact analysis of the free vibrations of simply-supported viscoelastic plates," Journal of Sound and Vibration, vol. 19, pp. 251–259, 1971.
    [16] L. Lengoc, H. Mccallion, "Wide bandsaw blade under cutting conditions, Part I: Vibration of a plate moving in its plane while subjected to tangential edge loading," Journal of Sound and Vibration, vol. 186, pp. 125–142, 1995.
    [17] L. Lengoc, H. Mccallion, "Wide bandsaw blade under cutting conditions, Part II: Stability of a plate moving in its plane while subjected to parametric excitation," Journal of Sound and Vibration, vol. 186, pp. 143–162, 1995.
    [18] H. P. Lee, T. Y. Ng, "Dynamic stability of a moving rectangular plate subject to in-plane acceleration and force perturbations," Applied Acoustics, vol. 45, pp. 47–59, 1995.
    [19] X. Wang, "Numerical analysis of moving orthotropic thin plates," Computers and structures, vol. 70, pp. 467-486, 1999.
    [20] M. Ganapathi, B. P. Patel, P. Boisse, M. Touratier, "Non-linear dynamic stability characteristics of elastic plates subjected to periodic in-plane load," International Journal of Non-Linear Mechanics, vol. 35, pp. 467–480, 2000.
    [21] Z. Luo, S. G. Hutton, "Formulation of a three-node traveling triangular plate element subjected to gyroscopic and in-plane forces," Computers and Structures, vol. 80, pp. 1935–1944, 2002.
    [22] J. Kim, J. Cho, U. Lee, S. Park, "Modal spectral element formulation for axially moving plates subjected to in-plane axial tension," Computers and Structures, vol. 81, pp. 2011–2020, 2003.
    [23] A. C. J. Luo, "Chaotic motions in resonant separatrix zones of periodically forced, axially travelling, thin plates," Journal of Multi-body Dynamics, vol. 219, pp. 237–247, 2005.
    [24] P. Jana, K. Bhaskar, "Stability analysis of simply-supported rectangular plates under non-uniform uniaxial compression using rigorous and approximate plane stress solutions," Thin-Walled Structures, vol. 44, pp. 507–516, 2006.
    [25] S. Hatami, M. Azhari, M. M. Saadatpour, "Free vibration of moving laminated composite plates," Composite Structures, vol. 80, pp. 609–620, 2007.
    [26] R. Daripa, M. K. Singha, "Stability analysis of composite plates under localized in-plane load," Thin-Walled Structures, vol. 47, pp. 601–606, 2009.
    [27] H. Akhavan, Sh. H. Hashemi, H. R. D. Taher, A. Alibeigloo, Sh. Vahabi, "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis," Computational Materials Science, vol. 44, pp. 951–961, 2009.
    [28] Y. Q. Tang, L. Q. Chen, "Nonlinear free transverse vibrations of in-plane moving plates: Without and with internal resonances," Journal of Sound and Vibration, vol. 330, pp. 110–126, 2011.
    [29] X. D. Yang, L. Q. Chen, J. W. Zu, "Vibrations and Stability of an Axially Moving Rectangular Composite Plate," Journal of Applied Mechanics, vol. 78, pp. 011018, 2011.
    [30] S. Hatami, H. R. Ronagh, M. Azhari, "Exact free vibration analysis of axially moving viscoelastic plates," Computers and Structures, vol. 86, pp. 1738–1746, 2008.
    [31] K. Marynowski, "Free vibration analysis of the axially moving Levy-type viscoelastic plate," European Journal of Mechanics A/Solids, vol. 29, pp. 879–886, 2010.
    [32] Y. Q. Tang, L. Q. Chen, "Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed," European Journal of Mechanics A/Solids, vol. 37, pp. 106–121, 2013.
    [33] C. C. Lin, "Stability and vibration characteristics of axially moving plates," Int. J. Solids Structures, vol. 34, pp. 3179-3190, 1997.
    [34] N. Banichuk, J. Jeronen, P. Neittaanmaki, T. Tuovinen, "On the instability of an axially moving elastic plate, " International Journal of Solids and Structures, vol. 47, pp. 91-99, 2010.
    [35] X. D. Yang, W. Zhang, L. Q. Chen, M. H. Yao, "Dynamical analysis of axially moving plate by finite difference method," Nonlinear Dynamics, pp. 1-10, 2011.

    QR CODE