簡易檢索 / 詳目顯示

研究生: 楊哲毓
Che-Yu Yang
論文名稱: 新穎性鈍化層對CuInS2量子點敏化太陽能電池效率提升之研究
Novel passivation layer for the performance enhancement of CuInS2 quantum dot sensitized solar cell
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江佳穎
Chia-Ying Chiang
何郡軒
Jinn-Hsuan Ho
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 量子點鈍化層量子點敏化太陽能電池
外文關鍵詞: passivation, quantum dot
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去研究中,避免光電極與電解液之間的電子電洞再結合,一直是QDSSC中十分重要的議題。在光電極與電解液界面中,包覆一種或是多種寬能隙材料,來降低其電子電洞再結合。包覆多種鈍化層雖然可以有效提高光電流(Jsc)值,但也會因為材料之間的晶格不匹配(lattice mismatch),導致填充因子(FF)值下降
    鈍化層的存在能降低界面電荷重組現象發生。而根據文獻,鈍化層的選擇要考慮材料能隙大小以及晶格不匹配度,本研究選用CdS與ZnS鈍化層以及其混合鈍化層,並希望結合兩種鈍化層優點,藉以提高Jsc值,以利光電轉換效率增加。在Zn前驅物溶液中加入鎘(Cd),形成CdZnS合金鈍化層,用以減少激發電子被電解液捕獲而發生電荷重組現象。新穎的CdZnS合金鈍化層比起ZnS鈍化層有更佳的效能,其光電流(Jsc)值以及效率(η)由ZnS鈍化層的22.0 (mA cm-2) 及6.94 (%) 上升至26.7 (mA cm-2) 及8.83 (%)。另外和CdS/ZnS以及ZnS/CdS混合鈍化層比較,可以發現CdZnS合金鈍化層有優秀的填充因子 (FF) 值,這是因為材料之間的晶格不匹配 (lattice mismatch),會使CdS/ZnS以及ZnS/CdS混合鈍化層電池內部阻抗過大,導致電子注入效率不佳。反觀CdZnS合金鈍化層,不只有最高的光電流(Jsc)值,更可以維持較高的填充因子 (FF) 值48.9 %以及開路電壓(Voc)值 661 (mV)。


    In the past research, passivation layer in quantum dot (QD)-sensitized solar cells (QDSSCs) plays a crucial role in preventing surface charge recombination, thus, improving the efficiency. Although coverd with kinds of passivation layer can raise the Jsc of QDSSCs effectively, lattice mismatch between materials will cause the decrease of the FF value.
    In this work, we introduced novel CdZnS alloy passivation layer to enhance the photovoltaic performance of QDSSCs. Consequently, the device exhibits remarkably enhanced short-circuit current (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE). The QDSSCs with a CdZnS alloy passivation layer confirmed strongly inhibited interfacial charge recombination and greatly enhanced light harvesting, resulting in a PCE and Jsc up to 8.83% and 26.7 (mA cm-2), which is appreciably higher than 6.94% and 22.0 (mA cm-2) for the solar cells with a ZnS passivation layer. Otherwise, CdZnS alloy passivation layer has higher fill factor (FF) and open-circuit voltage (VOC) than CdS/ZnS and ZnS/CdS double passivation layer. Because of the lattice mismatch between CdS and ZnS passivation layer, the inner resistance of double passivation layers become too large to inject electrons and cause the lower PCE.

    摘要 I Abstract II 總目錄 III 圖目錄 V 表目錄 VII 第一章 序論 1 1.1 前言 1 1.2 太陽能電池的發展概況 1 1.2.1 矽晶太陽能電池 2 1.2.2 薄膜太陽能電池 3 1.2.3 敏化太陽能電池 3 1.3 研究動機 5 第二章 文獻回顧 6 2.1奈米材料與量子點特性 6 2.1.1 量子侷限效應 (Quantum confinement effect) 6 2.1.2 多重激子化效應 (Mulitiple Exciton Generation, MEG) 8 2.2 量子點敏化太陽能電池 (Quantum-dots-seneitized solar cell, QDSSC) 10 2.2.1 工作原理 10 2.2.2 元件內部介紹 11 2.3 合成方法介紹 19 第三章 實驗藥品與方法 23 3.1 實驗藥品 23 3.2 實驗器材 24 3.3 實驗步驟 26 3.3.1 FTO導電玻璃基板清洗 26 3.3.2 光電極─二氧化鈦薄膜製備 27 3.3.3 量子點的製備與光電極的敏化 28 3.3.4 SILAR法成長不同鈍化層 29 3.3.5 CuS背電極之製備 31 3.3.6 電池元件組裝 31 第四章 結果與討論 33 4.1 CuInS2量子點之材料鑑定 33 4.2 不同鈍化層應用於元件之效能 34 4.2.1 ZnS鈍化層應用於元件之光電轉換效率 36 4.2.2 CdS鈍化層應用於元件之光電轉換效率 38 4.2.3 CdZnS鈍化層應用於元件之光電轉換效率 40 4.2.4 CdS/ZnS與ZnS/CdS鈍化層之光電轉換效率 42 4.2.5 不同鈍化層直接沉積TiO2之元件效能 44 4.3不同鈍化層應用於元件之電化學分析 45 4.3.1 電化學交流阻抗分析 (Electrochemical Impedance Spectroscopy, EIS) 45 4.3.2 光強度調制光電流/光電壓分析(Intensity Modulated Photocurrent/Photovoltage Spectroscopy,IMPS/IMVS) 55 4.4 TiO2/CIS/CdZnS光電極薄膜之鑑定分析 59 第五章 結論與未來展望 60 第六章 參考文獻 61

    [1]. Docampo, P.; Guldin, S.; Leijtens, T.; Noel, N. K.; Steiner, U.Snaith, H. J. J. A. M. Lessons learned: from dye‐sensitized solar cells to all‐solid‐state hybrid devices. 2014, 26, 4013.
    [2]. Perez, R.; Zweibel, K.Hoff, T. E. J. E. P. Solar power generation in the US: Too expensive, or a bargain? 2011, 39, 7290.
    [3]. Centurioni, E.Iencinella, D. Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance. IEEE Electron Device Letters, 2003, 24, 177.
    [4]. Abou-Ras, D.; Rudmann, D.; Kostorz, G.; Spiering, S.; Powalla, M.Tiwari, A. N. Microstructural and chemical studies of interfaces between Cu(In,Ga)Se2 and In2S3 layers. Journal of Applied Physics, 2005, 97,
    [5]. Tsubomura, H.; Matsumura, M.; Nomura, Y.Amamiya, T. J. N. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. 1976, 261, 402.
    [6]. Shockley, W.Queisser, H. J. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 1961, 32, 510.
    [7]. O'regan, B.Grätzel, M. J. n. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. 1991, 353, 737.
    [8]. Hanna, M. C.Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics, 2006, 100,
    [9]. Sharma, D.; Jha, R.Kumar, S. Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode. Solar Energy Materials and Solar Cells, 2016, 155, 294.
    [10]. Semonin, O. E.; Luther, J. M.Beard, M. C. Quantum dots for next-generation photovoltaics. Materials Today, 2012, 15, 508.
    [11]. Song, H.; Rao, H.Zhong, X. Recent advances in electrolytes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 4895.
    [12]. Tanabe, K.; Guimard, D.; Bordel, D.; Morihara, R.; Nishioka, M.Arakawa, Y. High-efficiency InAs/GaAs quantum dot solar cells by MOCVD. in 2012 38th IEEE Photovoltaic Specialists Conference. 2012. IEEE.
    [13]. Tanabe, K.; Guimard, D.; Bordel, D.Arakawa, Y. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Applied Physics Letters, 2012, 100,
    [14]. Rao, H.; Zhou, M.; Pan, Z.Zhong, X. Quantum dot materials engineering boosting the quantum dot sensitized solar cell efficiency over 13%. Journal of Materials Chemistry A, 2020, 8, 10233.
    [15]. Shen, Q.; Kobayashi, J.; Diguna, L. J.Toyoda, T. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. Journal of Applied Physics, 2008, 103,
    [16]. Gimenez, S.; Mora-Sero, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; Gomez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.Bisquert, J. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20, 295204.
    [17]. Chen, Y.; Tao, Q.; Fu, W.; Yang, H.; Zhou, X.; Zhang, Y.; Su, S.; Wang, P.Li, M. Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO. Electrochimica Acta, 2014, 118, 176.
    [18]. Neo, D. C. J.; Cheng, C.; Stranks, S. D.; Fairclough, S. M.; Kim, J. S.; Kirkland, A. I.; Smith, J. M.; Snaith, H. J.; Assender, H. E.Watt, A. A. R. Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chemistry of Materials, 2014, 26, 4004.
    [19]. Lövestam, G.; Rauscher, H.; Roebben, G.; Klüttgen, B. S.; Gibson, N.; Putaud, J.-P.Stamm, H. J. J. R. C. R. R. Considerations on a definition of nanomaterial for regulatory purposes. 2010, 80, 00.
    [20]. Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.Johnson, J. C. J. C. r. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. 2010, 110, 6873.
    [21]. Wang, Y.Herron, N. J. T. J. o. P. C. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. 1991, 95, 525.
    [22]. Green, M. J. C. o. i. s. s.science, m. Solution routes to III-V semiconductor quantum dots: Nanotechnology: Quatum dots. 2002, 6, 355.
    [23]. Bera, D.; Qian, L.; Tseng, T.-K.Holloway, P. H. Quantum Dots and Their Multimodal Applications: A Review. Materials, 2010, 3, 2260.
    [24]. Koole, R.; Groeneveld, E.; Vanmaekelbergh, D.; Meijerink, A.de Mello Donegá, C., Size Effects on Semiconductor Nanoparticles, in Nanoparticles. 2014. p. 13.
    [25]. Guyot-Sionnest, P.; Shim, M.; Matranga, C.Hines, M. J. P. R. B. Intraband relaxation in CdSe quantum dots. 1999, 60, R2181.
    [26]. Kouhnavard, M.; Ikeda, S.; Ludin, N. A.; Ahmad Khairudin, N. B.; Ghaffari, B. V.; Mat-Teridi, M. A.; Ibrahim, M. A.; Sepeai, S.Sopian, K. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2014, 37, 397.
    [27]. Nozik, A. J. J. P. E. L.-d. S.Nanostructures Quantum dot solar cells. 2002, 14, 115.
    [28]. Minami, T. New n-Type Transparent Conducting Oxides. MRS Bulletin, 2011, 25, 38.
    [29]. Fraser, D. B.Cook, H. D. Film deposition with the Sputter Gun. Journal of Vacuum Science and Technology, 1977, 14, 147.
    [30]. Shanthi, E.; Banerjee, A.; Dutta, V.Chopra, K. L. Electrical and optical properties of tin oxide films doped with F and (Sb+F). Journal of Applied Physics, 1982, 53, 1615.
    [31]. Desilvestro, J.; Graetzel, M.; Kavan, L.; Moser, J.Augustynski, J. J. J. o. t. A. C. S. Highly efficient sensitization of titanium dioxide. 1985, 107, 2988.
    [32]. Ferrere, S.; Zaban, A.Gregg, B. A. J. T. J. o. P. C. B. Dye sensitization of nanocrystalline tin oxide by perylene derivatives. 1997, 101, 4490.
    [33]. Keis, K.; Vayssieres, L.; Lindquist, S.-E.Hagfeldt, A. J. N. M. Nanostructured ZnO electrodes for photovoltaic applications. 1999, 12, 487.
    [34]. El Zayat, M.; Saed, A.El-Dessouki, M. J. I. j. o. h. e. Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes. 1998, 23, 259.
    [35]. Bang, J. H.Kamat, P. V. J. A. n. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. 2009, 3, 1467.
    [36]. Li, L.; Yang, X.; Zhao, J.; Gao, J.; Hagfeldt, A.Sun, L. Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte. Journal of Materials Chemistry, 2011, 21,
    [37]. Li, L.; Yang, X.; Gao, J.; Tian, H.; Zhao, J.; Hagfeldt, A.Sun, L. Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte. J Am Chem Soc, 2011, 133, 8458.
    [38]. Sobus, J.; Burdzinski, G.; Karolczak, J.; Idigoras, J.; Anta, J. A.Ziolek, M. Comparison of TiO(2) and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes. Langmuir, 2014, 30, 2505.
    [39]. Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.Herz, L. M. J. A. n. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. 2011, 5, 5158.
    [40]. Quintana, M.; Edvinsson, T.; Hagfeldt, A.Boschloo, G. J. T. J. o. P. C. C. Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. 2007, 111, 1035.
    [41]. Chandiran, A. K.; Abdi-Jalebi, M.; Nazeeruddin, M. K.Grätzel, M. J. A. n. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. 2014, 8, 2261.
    [42]. Li, Z.; Yu, L.; Liu, Y.Sun, S. J. E. A. Efficient quantum dot-sensitized solar cell based on CdSxSe1-x/Mn-CdS/TiO2 nanotube array electrode. 2015, 153, 200.
    [43]. Jiao, J.; Zhou, Z.-J.; Zhou, W.-H.Wu, S.-X. J. M. S. i. S. P. CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application. 2013, 16, 435.
    [44]. Peng, Z.; Liu, Y.; Zhao, Y.; Shu, W.; Chen, K.; Bao, Q.Chen, W. J. E. A. Efficiency enhancement of TiO2 nanodendrite array electrodes in CuInS2 quantum dot sensitized solar cells. 2013, 111, 755.
    [45]. Li, Z.; Yu, L.; Liu, Y.Sun, S. J. E. A. CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. 2014, 129, 379.
    [46]. Raj, C. J.; Karthick, S.; Park, S.; Hemalatha, K.; Kim, S.-K.; Prabakar, K.Kim, H.-J. J. J. o. P. S. Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. 2014, 248, 439.
    [47]. Martinson, A. B.; Elam, J. W.; Hupp, J. T.Pellin, M. J. J. N. l. ZnO nanotube based dye-sensitized solar cells. 2007, 7, 2183.
    [48]. Chen, H.; Li, W.; Liu, H.Zhu, L. J. E. C. CdS quantum dots sensitized single-and multi-layer porous ZnO nanosheets for quantum dots-sensitized solar cells. 2011, 13, 331.
    [49]. Zhao, Y.; Guo, H.; Hua, H.; Xi, Y.Hu, C. J. E. A. Effect of architectures assembled by one dimensional ZnO nanostructures on performance of CdS quantum dot-sensitized solar cells. 2014, 115, 487.
    [50]. Barber, J. J. C. S. R. Photosynthetic energy conversion: natural and artificial. 2009, 38, 185.
    [51]. Reyes-Coronado, D.; Rodriguez-Gattorno, G.; Espinosa-Pesqueira, M. E.; Cab, C.; de Coss, R.Oskam, G. Phase-pure TiO(2) nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008, 19, 145605.
    [52]. Du, Z.; Zhang, H.; Bao, H.Zhong, X. Optimization of TiO2photoanode films for highly efficient quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2,
    [53]. Kruse, O.; Rupprecht, J.; Mussgnug, J. H.; Dismukes, G. C.Hankamer, B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci, 2005, 4, 957.
    [54]. Li, S.; Chen, Z.; Li, T.; Gao, H.; Wei, C.; Li, W.; Kong, W.Zhang, W. Vertical nanosheet-structured ZnO/TiO2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells. Electrochimica Acta, 2014, 127, 362.
    [55]. Song, X.; Wang, M.; Xing, T.; Deng, J.; Ding, J.; Yang, Z.Zhang, X. Fabrication of micro/nano-composite porous TiO2 electrodes for quantum dot-sensitized solar cells. Journal of Power Sources, 2014, 253, 17.
    [56]. Badawi, A.; Al-Hosiny, N.; Abdallah, S.; Negm, S.Talaat, H. Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Solar Energy, 2013, 88, 137.
    [57]. Tao, L.; Xiong, Y.; Liu, H.Shen, W. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale, 2014, 6, 931.
    [58]. Ostadebrahim, M.Dehghani, H. Improving the photovoltaic performance of CdSe0.2S0.8 alloyed quantum dot sensitized solar cells using CdMnSe outer quantum dot. Solar Energy, 2020, 199, 901.
    [59]. Pan, Z.; Zhao, K.; Wang, J.; Zhang, H.; Feng, Y.Zhong, X. J. A. n. Near infrared absorption of CdSe x Te1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. 2013, 7, 5215.
    [60]. Chang, J. Y.; Li, C. H.; Chiang, Y. H.; Chen, C. H.Li, P. N. Toward the Facile and Ecofriendly Fabrication of Quantum Dot-Sensitized Solar Cells via Thiol Coadsorbent Assistance. ACS Appl Mater Interfaces, 2016, 8, 18878.
    [61]. Niezgoda, J. S.; Yap, E.; Keene, J. D.; McBride, J. R.Rosenthal, S. J. Plasmonic Cu(x)In(y)S2 quantum dots make better photovoltaics than their nonplasmonic counterparts. Nano Lett, 2014, 14, 3262.
    [62]. Chiang, Y.-H.; Lin, K.-Y.; Chen, Y.-H.; Waki, K.; Abate, M. A.; Jiang, J.-C.Chang, J.-Y. Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 9629.
    [63]. McDaniel, H.; Fuke, N.; Pietryga, J. M.Klimov, V. I. Engineered CuInSexS2-x Quantum Dots for Sensitized Solar Cells. J Phys Chem Lett, 2013, 4, 355.
    [64]. Yang, Z.; Chen, C. Y.; Liu, C. W.Chang, H. T. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chem Commun (Camb), 2010, 46, 5485.
    [65]. Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.Wang, Q. J. A. N. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. 2011, 5, 3172.
    [66]. Lee, H. J.; Bang, J.; Park, J.; Kim, S.Park, S.-M. J. C. o. M. Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes. 2010, 22, 5636.
    [67]. Zhang, W.; Zhang, H.; Feng, Y.Zhong, X. J. A. n. Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared. 2012, 6, 11066.
    [68]. Jeong, D.-W.; Kim, J.-Y.; Seo, H. W.; Lim, K.-M.; Ko, M. J.; Seong, T.-Y.Kim, B. S. Characteristics of gradient-interface-structured ZnCdSSe quantum dots with modified interface and its application to quantum-dot-sensitized solar cells. Applied Surface Science, 2018, 429, 16.
    [69]. Kobosko, S. M.Kamat, P. V. Indium-Rich AgInS2–ZnS Quantum Dots—Ag-/Zn-Dependent Photophysics and Photovoltaics. The Journal of Physical Chemistry C, 2018, 122, 14336.
    [70]. Yue, L.; Rao, H.; Du, J.; Pan, Z.; Yu, J.Zhong, X. Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances, 2018, 8, 3637.
    [71]. Yang, P.; Ando, M.Murase, N. Encapsulation of emitting CdTe QDs within silica beads to retain initial photoluminescence efficiency. J Colloid Interface Sci, 2007, 316, 420.
    [72]. Ma, Y.; Li, Y.Zhong, X. Silica coating of luminescent quantum dots prepared in aqueous media for cellular labeling. Materials Research Bulletin, 2014, 60, 543.
    [73]. Li, L.; Daou, T. J.; Texier, I.; Kim Chi, T. T.; Liem, N. Q.Reiss, P. J. C. o. M. Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. 2009, 21, 2422.
    [74]. Ruan, C.; Zhang, Y.; Lu, M.; Ji, C.; Sun, C.; Chen, X.; Chen, H.; Colvin, V. L.Yu, W. W. J. N. White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication. 2016, 6, 13.
    [75]. Koneswaran, M.Narayanaswamy, R. RETRACTED: Ultrasensitive detection of vitamin B6 using functionalised CdS/ZnS core–shell quantum dots. Sensors and Actuators B: Chemical, 2015, 210, 811.
    [76]. Huang, F.; Hou, J.; Zhang, Q.; Wang, Y.; Massé, R. C.; Peng, S.; Wang, H.; Liu, J.Cao, G. Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy, 2016, 26, 114.
    [77]. Mingsukang, M. A.; Buraidah, M. H.Careem, M. A. Development of gel polymer electrolytes for application in quantum dot-sensitized solar cells. Ionics, 2016, 23, 347.
    [78]. Abate, M. A.Chang, J.-Y. Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells, 2018, 182, 37.
    [79]. Radich, J. G.; Dwyer, R.Kamat, P. V. Cu2S Reduced Graphene Oxide Composite for High-Efficiency Quantum Dot Solar Cells. Overcoming the Redox Limitations of S2–/Sn2– at the Counter Electrode. The Journal of Physical Chemistry Letters, 2011, 2, 2453.
    [80]. Tachan, Z.; Shalom, M.; Hod, I.; Rühle, S.; Tirosh, S.Zaban, A. PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. The Journal of Physical Chemistry C, 2011, 115, 6162.
    [81]. Gopi, C. V.; Venkata-Haritha, M.; Kim, S.-K.; Rao, S. S.; Punnoose, D.Kim, H.-J. J. R. a. Highly efficient and stable quantum dot-sensitized solar cells based on a Mn-doped CuS counter electrode. 2015, 5, 2963.
    [82]. Deng, M.; Huang, S.; Zhang, Q.; Li, D.; Luo, Y.; Shen, Q.; Toyoda, T.Meng, Q. J. C. l. Screen-printed Cu2S-based counter electrode for quantum-dot-sensitized solar cell. 2010, 39, 1168.
    [83]. Salaramoli, H.; Maleki, E.; Shariatinia, Z.; Ranjbar, M. J. J. o. P.Chemistry, P. A. CdS/CdSe quantum dots co-sensitized solar cells with Cu2S counter electrode prepared by SILAR, spray pyrolysis and Zn–Cu alloy methods. 2013, 271, 56.
    [84]. Jiao, S.; Du, J.; Du, Z.; Long, D.; Jiang, W.; Pan, Z.; Li, Y.Zhong, X. J. T. j. o. p. c. l. Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%. 2017, 8, 559.
    [85]. Yuan, B.; Gao, Q.; Zhang, X.; Duan, L.; Chen, L.; Mao, Z.; Li, X.Lü, W. J. E. A. Reduced graphene oxide (RGO)/Cu2S composite as catalytic counter electrode for quantum dot-sensitized solar cells. 2018, 277, 50.
    [86]. Zhang, H.; Yang, C.; Du, Z.; Pan, D.Zhong, X. J. J. o. M. C. A. Graphene hydrogel-based counter electrode for high efficiency quantum dot-sensitized solar cells. 2017, 5, 1614.
    [87]. Tang, Q.; Cai, H.; Yuan, S.Wang, X. J. J. o. M. C. A. Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. 2013, 1, 317.
    [88]. Lee, Y.-L.Chang, C.-H. J. J. o. P. S. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. 2008, 185, 584.
    [89]. Chae, S. Y.; Hwang, Y. J.Joo, O.-S. J. R. A. Role of HA additive in quantum dot solar cell with Co [(bpy) 3] 2+/3+-based electrolyte. 2014, 4, 26907.
    [90]. Tachibana, Y.; Akiyama, H. Y.; Ohtsuka, Y.; Torimoto, T.Kuwabata, S. J. C. l. CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. 2007, 36, 88.
    [91]. Kim, H.; Hwang, I.; Yong, K. J. A. a. m.interfaces Highly durable and efficient quantum dot-sensitized solar cells based on oligomer gel electrolytes. 2014, 6, 11245.
    [92]. Niesen, T. P.De Guire, M. R. J. S. S. I. deposition of ceramic thin films at low temperatures from aqueous solutions. 2002, 151, 61.
    [93]. Chang, C.-H.Lee, Y.-L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Applied Physics Letters, 2007, 91,
    [94]. Liu, D.Kamat, P. V. J. T. J. o. P. C. Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films. 1993, 97, 10769.
    [95]. Kim, H.-J.; Suh, S.-M.; Rao, S. S.; Punnoose, D.; Tulasivarma, C. V.; Gopi, C. V.; Kundakarla, N.; Ravi, S.Durga, I. K. J. J. o. E. C. Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. 2016, 777, 123.
    [96]. Keuleyan, S.; Lhuillier, E.; Brajuskovic, V.Guyot-Sionnest, P. J. N. P. Mid-infrared HgTe colloidal quantum dot photodetectors. 2011, 5, 489.
    [97]. Zaban, A.; Mićić, O.; Gregg, B.Nozik, A. J. L. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. 1998, 14, 3153.
    [98]. Gong, J.; Liang, J.; Sumathy, K. J. R.Reviews, S. E. Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. 2012, 16, 5848.
    [99]. Wu, C.; Jia, L.; Guo, S.; Han, S.; Chi, B.; Pu, J.; Jian, L. J. A. a. m.interfaces Open-circuit voltage enhancement on the basis of polymer gel electrolyte for a highly stable dye-sensitized solar cell. 2013, 5, 7886.
    [100]. Ye, M.; Gao, X.; Hong, X.; Liu, Q.; He, C.; Liu, X.; Lin, C. J. S. E.Fuels Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. 2017, 1, 1217.
    [101]. Lasia, A., Electrochemical impedance spectroscopy and its applications, in Modern aspects of electrochemistry. 2002, Springer. p. 143.
    [102]. Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.Peter, L. M. J. T. J. o. P. C. B. Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. 2003, 107, 7536

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2025/08/19 (校外網路)
    全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE