簡易檢索 / 詳目顯示

研究生: 陳志瑋
CHIH-WEI CHEN
論文名稱: 兩級式三階層轉換器結合被動式漣波消除電路應用於太陽能發電系統
Two-Stage Three-Level Converter with Passive Ripple Cancelling Circuit for Photovoltaic Generation System
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 連國龍
Kuo-Lung Lian
江茂欽
Maoh-Chin Jiang
陳良瑞
Liang-Rui Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 133
中文關鍵詞: 最大功率追蹤被動式漣波消除電路空間向量脈波寬度調變數位鎖相迴路數位信號處理器三階層NPC變流器三階層直流/直流轉換器太陽能發電系統
外文關鍵詞: Maximum Power Point Tracking (MPPT), Three-Level DC/DC Boost Converter (TLBC), Passive Ripple Cancelling Circuit (PRCC), Phase-Locked Loop (PLL), Digital Control, Three-Level NPC Inverter, Space Vector Pulse Width Modulation (SVPWM), Photovoltaic (PV)
相關次數: 點閱:585下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在設計及製作兩級式三階層太陽能發電系統轉換器並結合被動式漣波消除電路(Passive Ripple Cancelling Circuit, PRCC),系統前級為三階層直流/直流轉換器而系統後級為三階層NPC三相變流器。系統前級三階層直流/直流升壓式轉換器選用擾動觀察法使太陽能系統在變動的環境下能有最佳的輸出功率,而後級三階層NPC變流器控制策略使用空間向量調變法,可提高直流鏈電壓的利用率,並作為與市電併網用且與市電同步策略使用數位式鎖相迴路。且於前級電路三階層直流/直流轉換器結合被動式漣波消除電路,抑制轉換器之輸入電流之電流漣波。本論文建立1.2 kW系統,並使用德州儀器生產的數位訊號處理器(TMS320F28069)作為數位控制核心,進行實作與量測來驗證此架構之可行性,並針對所結合之被動式漣波消除電路模擬分析與實作驗證其效果。


    The photovoltaic (PV) generation system investigated in this paper is a two-stage topology which consists of a DC/DC three-level boost converter with passive ripple cancelling circuit (PRCC) and a grid-connected three-level NPC inverter. The DC/DC three-level boost converter applies perturb-and-observe algorithm for maximum power point tracking according to changing environment, which combines passive ripple cancelling circuit in order to eliminate current ripple of converter input current. The three-level NPC inverter is proposed to reduce the output voltage harmonics. The three-phase three-level NPC inverter uses space-vector-pulse-width modulation (SVPWM) technology to increase the usage of the DC-link voltage. Moreover, a digital phase lock loop (DPLL) is applied to synchronize to utility. In order to demonstrating the performance of the proposed converter, a 1.2 kW prototype is established and a digital signal processor (DPS TMS320F28069) is used as the digital controller. Finally, the experimental results show the validity of the proposed photovoltaic generation system.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 系統描述與研究方法 2 1.3 內容大綱 3 第二章 太陽能發電系統 5 2.1 前言 5 2.2 太陽能電池 5 2.2.1 太陽能電池工作原理 6 2.2.2 太陽能電池種類 7 2.2.3 太陽能光電板特性 9 2.3 最大功率追蹤法則介紹 16 2.3.1 電壓迴授法 17 2.3.2 電流迴授法 17 2.3.3 功率迴授法 18 2.3.4 擾動觀察法 18 2.3.5 增量電導法 20 2.3.6 直線近似法 22 2.3.7 實際量測法 23 第三章 系統架構與控制策略 24 3.1 前言 24 3.2 直流/直流升壓式轉換器 25 3.2.1 傳統直流/直流升壓式轉換器 25 3.2.2 三階層直流/直流升壓式轉換器 26 3.2.3 控制策略 30 3.3 直流/交流轉換器 32 3.3.1 三階NPC型態變流器 33 3.3.2 座標軸轉換與功率計算 34 3.3.3 空間向量脈波寬度調變 38 3.3.4 三階NPC變流器控制策略 60 3.4 數位式鎖相迴路 61 第四章 被動式漣波消除策略 63 4.1 前言 63 4.2 漣波消除策略介紹 64 4.3 被動式漣波消除電路 68 4.3.1 轉換器工作原理 69 4.3.2 轉換器特性 79 4.4 被動式漣波消除電路架構延伸 83 4.5 模擬驗證 85 第五章 硬體架構與軟體規劃 90 5.1 前言 90 5.2 硬體架構 90 5.2.1 系統電路具被動式漣波消除電路之三階層升壓式轉換器 91 5.2.2 系統電路之三階層NPC變流器 93 5.2.3 數位訊號處理器 94 5.2.4 功率開關驅動元件電路 96 5.2.5 電壓感測電路 97 5.2.6 電流感測電路 98 5.3 軟體規劃 99 5.3.1 類比數位轉換比例設計 99 5.3.2 程式流程圖 100 第六章 實作與量測 106 6.1 前言 106 6.2 三階層升壓式直流/直流轉換器 107 6.3 三階層升壓式直流/直流轉換器結合被動式漣波消除電路 110 6.4 三階層NPC三相變流器 114 6.4.1 NPC變流器量測 114 6.4.2 市電併網波形量測 117 6.4.3 NPC變流器效率曲線 119 6.5 兩級式三階層轉換器並結合被動式漣波消除電路 120 6.5.1 最大功率追蹤量測波形 121 6.5.3 系統效率曲線 125 第七章 結論與未來研究方向 126 7.1 結論 126 7.2 未來研究方向 127 參考文獻 128

    [1] A. V. Herzog, T. E. Lipman, J. L. Edwards, and D. M. Kammen, “Renewable energy: A vaiable choice,” Environment, vol. 43, no. 10, pp. 8-20, 2001.
    [2] J. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, M. P. Comech, R. Granadino, and J .I. Frau, “Distributed generation: toward a new energy paradigm,” IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 52-64, Mar. 2010.
    [3] C. R. Sullivan, J. J. Awerbuch, and A. M. Latham, “Decrease in photovoltaic power output from ripple: simple general calculation and the effect of partial shading,” IEEE Transactions on Industrial Electronics, vol. 28, no. 2, pp. 740-747, Feb. 2013.
    [4] N. D. Benavides and P. L. Chapman, “Modeling the effect of voltage ripple on the power output of photovoltaic modules,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2638-2643, Jul. 2008.
    [5] Ching-Tsai Pan, Ming-Chieh Cheng and Ching-Ming Lai, "Current ripple-free module integrated converter (MIC) with more precise maximum power tracking control for PV energy harvesting," Power Electronics and Drive Systems (PEDS), 2013 IEEE 10th International Conference on , pp.1328,1334, 22-25 April 2013
    [6] 張建偉,「太陽能電池最大功率點追蹤之研究」,碩士學位論文,國立成功大學,民國九十八年一月。
    [7] 莊嘉琛,「太陽能工程-太陽能電池篇」,全華書局出版社,1997。
    [8] 吳財福、陳裕愷、張健軒,「太陽光電能供電能與照明系統綜論」,第二版,全華書局出版社,2007。
    [9] 王寶勝,「以數位信號處理器為基礎之具可控整流風力與太陽能複合發電系統之研製」,碩士學位論文,國立台灣科技大學,民國九十八年七月。
    [10] M. A. S. Masoum, H. Dehbonei, and E. F, “Theoretical and Experimental Analyses of Photovoltaic Systems with Voltage and Current-Based Maximum Power-Point Tracking,” IEEE Transactions on Energy Conversion, vol. 17, no. 4, pp. 514-522, Dec. 2002.
    [11] Z. M. Salameh, F. Dagher, and W. A. Lynch, “Step-down maximum power point tracker for photovoltaic systems,” Solar Energy, vol. 46, no. 5, pp. 279-282.
    [12] F. L. Luo, “Positive output Luo converters: voltage lift technique,” IEE Electric Power Applications,vol. 146, pp. 415-432, 1999.
    [13] S. J. Chiang, K. T. Chang, and C. Y. Yen, “Residential Photovoltaic Energy Storage System,” IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp. 385-394, Jun. 1998.
    [14] F. Harashima, H. Inaba, S. Kondo, and N. Takashima, “Microprocessor-Controlled SIT Inverter for Solar Energy System,” IEEE Transactions on Industrial Electronics, vol. IE-34, pp. 50-55, 1987.
    [15] J. H. R. Enslin, “Maximum power point tracking: a cost saving necessity in solar energy systems,” in Proc. the IEEE, vol. 2, pp. 1073–1077, 1990.
    [16] G. Petrone, G. Spagnuolo, and M. Vitelli, “A Multivariable Perturb-and-Observe Maximum Power Point Tracking Technique Applied to a Single-Stage Photovoltaic Inverter,” IEEE Transactions on Industrial Electronics, vol.58, no.1, pp. 76-84, Jan. 2011
    [17] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximun Power Point Tracking Method,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963-973, Jul. 2005.
    [18] J. A. Gow, and C. D. Manning, “Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources,” IEE Electric Power Applications, vol.147, no.1, pp. 15-20, 2000.
    [19] C. R. Sullivan, and M. J. Powers, “A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle,” in Proc. IEEE PESC, pp. 574-580, 1999.
    [20] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A Variable Step Size INC MPPT Method for PV System,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2622-2628, July 2008.
    [21] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEE Generation, Transmission and Distributio, vol.142, no.1, pp. 59-64, Jan. 1995.
    [22] T. P. Ching, Y. C. Jeng, P. C. Chin, and S. H. Yi, “A fast maximum power point tracker for photovoltaic power systems ,” in Proc. IEEE IECON, 1999, vol.1, pp. 390-393.
    [23] Mohan, Undeland, and Robbins, Power Electronics, 3rd edition, John Wiley and Sons, NY, 2003.
    [24] 劉昌煥,「交流電機控制」,第二版,東華書局出版社,2003。
    [25] Zhang, M.T., Yimin Jiang, Lee, F.C., Jovanovic, M.M., "Single-phase three-level boost power factor correction converter," Applied Power Electronics Conference and Exposition, 1995. APEC '95. Conference Proceedings 1995., Tenth Annual, pp.434,439 vol.1, 5-9 Mar 1995
    [26] Jung-Min Kwon, Bong-Hwan Kwon, Kwang-Hee Nam, "Three-Phase Photovoltaic System With Three-Level Boosting MPPT Control," IEEE Transactions on Power Electronics, vol.23, no.5, pp.2319,2327, Sept. 2008
    [27] J. R. Pinheiro, D. L. R. Vidor, H. A. Grundling, “Dual output three-level boost power factor correction converter with unbalanced loads,” in Proc. IEEE PESC, vol.1, pp. 733-739, 1996.
    [28] V. Yaramasu, B. Wu, “Three-level boost converter based medium voltage megawatt PMSG wind energy conversion systems,” in Proc. IEEE ECCE, pp.561-567, 17-22 Sept. 2011.
    [29] U. M. Choi, H. H. Lee, and K. B. Lee, “Simple Neutral-Point Voltage Control for Three-Level Inverters Using a Discontinuous Pulse Width Modulation,” IEEE Transactions on Energy Conversion, vol.28, no.2, pp. 434-443, June 2013.
    [30] Y. Park, S. K. Sul, C. H. Lim, W. C. Kim, and S. H. Lee, “Asymmetric Control of DC-Link Voltages for Separate MPPTs in Three-Level Inverters,” IEEE Transactions on Power Electronics, vol.28, no.6, pp. 2760-2769, June 2013.
    [31] 詹前茂,「電機驅動控制理論與實驗」,新文京開發出版股份有限公司,2003。
    [32] A. Dey, P. P. Rajeevan, R. Ramchand, K. Mathew, and K. Gopakumar, “A Space-Vector-Based Hysteresis Current Controller for a General n -Level Inverter-Fed Drive With Nearly Constant Switching Frequency Control,” IEEE Transactions on Industrial Electronics, vol.60, no.5, pp. 1989-1998, May 2013.
    [33] D. A. Fernandes, F. F. Costa, and E. C. dos-Santos, “Digital-Scalar PWM Approaches Applied to Four-Leg Voltage-Source Inverters,” IEEE Transactions on Industrial Electronics, vol.60, no.5, pp. 2022-2030, May 2013.
    [34] J. Pou, J. Zaragoza, S. Ceballos, M. Saeedifard, and D. Boroyevich, “A Carrier-Based PWM Strategy With Zero-Sequence Voltage Injection for a Three-Level Neutral-Point-Clamped Converter,” IEEE Transactions on Power Electronic, vol.27, no.2, pp. 642-651, Feb. 2012.
    [35] M. Mingyao, H. Xiangning, and B. W. Williams, “Synchronization Analysis of Space-Vector PWM Converters With Distributed Control,” IEEE Transactions on Power Electronics, vol.25, no.12, pp. 3026-3036, Dec. 2010.
    [36] B. Mwinyiwiwa, Z. Wolanski, O. Boon-Teck, “Microprocessor-implemented SPWM for multiconverters with phase-shifted triangle carriers,” IEEE Transactions on Industry Applications , vol.34, no.3, pp. 487-494, May/Jun 1998.
    [37] Lei Hu, Hongyan Wang, Yan Deng, Xiangning He, "A simple SVPWM algorithm for multilevel inverters," Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol.5, pp.3476-3480, June 2004.
    [38] Gupta. AK., Khambadkone. AM., "A General Space Vector PWM Algorithm for a Multilevel Inverter Including Operation in Overmodulation Range, with a Detailed Modulation Analysis for a 3-level NPC Inverter," IEEE Transactions on Power Electronics, vol.22, no.2, pp.517,526, March 2007.
    [39] Jae-Hyeong Suh, Chang-Ho Choi, Dong-Seok Hyun, "A new simplified space-vector PWM method for three-level inverters," Applied Power Electronics Conference and Exposition, 1999. APEC '99, Fourteenth Annual, pp.515-520, Mar 1999.
    [40] J. Puukko, and T. Suntio, “Dynamic properties of a voltage source inverter-based three-phase inverter in photovoltaic application,” IET Renewable Power Generation, vol.6, no.6, pp. 381-391, Nov. 2012.
    [41] C. Yang, and K. Smedley, “Three-Phase Boost-Type Grid-Connected Inverter,” IEEE Transactions on Power Electronics, vol.23, no.5, pp. 2301-2309, Sept. 2008.
    [42] Z. Wang, and L. Chang, “A Novel Vdc Voltage Monitoring and Control Method for Three-Phase Grid-Connected Inverter,” in Proc. IEEE PESC, pp. 1221-1226, 2007.
    [43] J. W. Choi, Y. K. Kim, and H. G. Kim, “Digital PLL control for single-phase photovoltaic system,” IEE Electric Power Applications, vol.153, no.1, pp. 40-46, 1 Jan. 2006.
    [44] S. Sakamoto, T. Izumi, T. Yokoyama, and T. Haneyoshi, “A new method for digital PLL control using estimated quadrature two phase frequency detection,” in Proc. IEEE PCCON, vol.2, pp. 671-676, 2002.
    [45] L. N. Amuda, B. J. Cardoso-Filho, S. M. Silva, S. R. Silva, and A. S.A.C. Diniz, “Wide bandwidth single and three-phase PLL structures for grid-tied PV systems,” in Proc. IEEE PVSC, pp. 1660-1663, 2000.
    [46] S. Martin-Martinez, E. Gomez-Lazaro, A. Molina-Garcia, J.A. Fuentes, A. Vigueras-Rodriguez, and S. Amat-Plata, “A New Three-Phase DPLL Frequency Estimator Based on Nonlinear Weighted Mean for Power System Disturbances,” IEEE Transactions on Power Delivery, vol.28, no.1, pp. 179-187, Jan. 2013.
    [47] C. R. Sullivan, J. J. Awerbuch, and A. M. Latham, “Decrease in photovoltaic power output from ripple: simple general calculation and the effect of partial shading,” IEEE Transactions on Industrial Electronics, vol. 28, no. 2, pp. 740-747, Feb. 2013.
    [48] N. D. Benavides and P. L. Chapman, “Modeling the effect of voltage ripple on the power output of photovoltaic modules,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2638-2643, Jul. 2008.
    [49] H. Hu, S. Harb, N. H. Kutkut, Z. J. Shen, and I. Batarseh, “A single-stage microinverter without using eletrolytic capacitors,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2677-2687, Jun. 2013.
    [50] S. Ćuk, “A new zero-ripple switching DC-to-DC converter and integrated magnetics,” IEEE Transactions on Magnetics, vol. 19, no. 2, pp. 57-75, Mar. 1983.
    [51] G. Zhu, B. McDonald, and K. Wang, “Modeling and Analysis of Coupled Inductors in Power Converters,” IEEE Applied Power Electronics Conference and Exposition Conference, pp. 83-89, Feb. 2009.
    [52] Yu Gu, and Donglai Zhang, "Interleaved Boost Converter with Ripple Cancellation Network," IEEE Transactions on Power Electronics, vol.28, no.8, pp.3860-3869, Aug. 2013.
    [53] Bor-Ren Lin, and Chien-Lan Huang, "Interleaved ZVS Converter With Ripple-Current Cancellation," IEEE Transactions on Industrial Electronics, vol.55, no.4, pp.1576-1585, April 2008.
    [54] Gang Yao, Alian Chen, Xiangning He, "Soft Switching Circuit for Interleaved Boost Converters," IEEE Transactions on Power Electronics, vol.22, no.1, pp.80-86, Jan. 2007.
    [55] 鄭明杰,「應用於光伏系統之零輸入電流漣波邱克轉換器」,碩士學位論文,國立清華大學,民國九十八年七月。

    QR CODE