簡易檢索 / 詳目顯示

研究生: 謝珮娟
Pei-Jiuan Shie
論文名稱: 植入變壓器電路之超寬頻射頻接收器前端晶片設計
UWB RF Receiver Front-end Chip Design with On-Chip Transformer Circuit
指導教授: 黃進芳
Jhin-Fang Huang
劉榮宜
Ron-Yi Liu
口試委員: 徐敬文
C.-W. Hsue
張勝良
Sheng-Lyang Jang
陳國龍
Kuo-Lung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 97
中文關鍵詞: 超寬頻低雜訊放大器變壓器被動式巴倫混波器
外文關鍵詞: UWB, low noise amplifier, transformer, passive balun, mixer
相關次數: 點閱:311下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製一個應用於超寬頻3.1-8 GHz之射頻接收機前端電路。此前端電路包含低雜訊放大器、被動式巴倫以及雙平衡混波器且使用台積電所提供0.18微米互補式金氧半製程以1.8伏特來完成所有晶片與量測。低雜訊放大器以三級放大架構為主,第一級採用反相器技術植入變壓器,可以達到頻寬匹配以及減少晶片面積,第二級為cascode結構,可以消除米勒效應且改善平均順向增益,第三級主要於匹配下一級電路。採用被動式巴倫在於不會消耗功率。雙平衡混波器使用current bleeding技術來提昇轉換增益以及改善線性度。
    量測結果顯示最大轉換增益為30.32 dB。最小的雜訊為4.79 dB。輸入返回損耗與輸出返回損耗分別為小於-15.3 dB和-13.3 dB。三階輸入截斷點為-21.4 dBm。LO_RF隔離度與LO_IF隔離度分別為-57dB 以及-27.8 dB。晶片面積包含pad為0.984 mm2。總消耗功率為36.88mW。


    In the thesis, the proposed RF receiver front-end circuit for ultra-wideband (UWB) systems operating in 3.1-8.0 GHz frequency range is presented. The proposed RF front-end consists of low-noise amplifier (LNA), passive balun and double-balance mixer and is fabricated in a TSMC 0.18-μm CMOS process with 1.8 V supply voltage. The LNA employs three stages. The first stage uses the inverting technique embedding the symmetric planar transformer to achieve the wideband matching and less chip area. The secondary stage uses the cascode structure to eliminate the Miller effect and improve the isolation. The third stage is mostly used to match the following stage. Using the passive balun can reduce the power dissipation. The double-balance mixer uses the current-bleeding to lift the conversion gain and improve the linearity.
    The measured results show a maximum power gain of 30.32 dB, a minimum noise figure (NF) of 4.79 dB, and an input return loss (S11) less than -15.3 dB over the whole frequency range. This circuit also achieves an input-referred third-order intercept point (IIP3) of -21.4dBm. The isolations of LO to RF and LO to IF are less than -57 dB and -27.8, respectively. The chip area including pads is only 0.984 mm2 and power dissipation of 36.88mW.

    Contents List of Figures III List of Tables VI CHAPTER 1 Introduction 1 1.1 Ultra-Wideband Broadband (UWB) Standard 1 1.2 Motivation 2 1.3 Thesis Organization 3 CHAPTER 2 UWB System Architecture 5 2.1 UWB System Design 5 2.1.1 MB-UWB 5 2.1.2 DS-UWB 6 2.2 UWB Receiver Specification 7 2.3 Receiver Architecture 8 2.3.1 Heterodyne 8 2.3.2 Homodyne 9 2.3.3 Low-IF Receiver 10 2.4 Receiver Architecture 10 2.4.1 Design Consideration of UWB Receiver 10 2.4.2 Noise Figure 11 2.4.3 Linearity 11 2.4.4 Dynamic Range 12 2.4.5 Isolation 14 2.4.6 Sensitively 14 2.5 System Design Paper Survey 16 2.6 CMOS Process Introduction 17 2.6.1 RFMOS 18 2.6.2 Resistance 19 2.6.3 Capacitor 19 2.6.4 Inductor 19 2.6.5 Transformer 21 CHAPTER 3 UWB Low Noise Amplifier Chip Design 25 3.1 Introduction 25 3.2 LNA Paper Survey 26 3.3 Design Consideration for UWB LNA Circuit 28 3.3.1 Stability 28 3.3.2 Gain 30 3.3.3 Noise figure 31 3.3.4 Linearity 34 3.4 On-Chip transformer Design Issue 35 3.4.1 Theory analysis for inverting transformer 35 3.4.2 Transformer 37 3.4.3 Balun 40 3.5 3.1 to 8.0 GHz LNA Design 42 3.5.1 Input Matching 42 3.5.2 Gain Analysis 44 3.5.3 Noise Analysis 48 3.5.4 Shunt Peaking Scheme 52 3.6 UWB LNA Simulation 55 CHAPTER 4 Ultra-Wideband Mixer Chip Design 61 4.1 Introduction 61 4.2 Mixer Paper Survey 63 4.3 Design Consideration for UWB Mixer Circuit 63 4.3.1 Conversion Gain 65 4.3.2 NF 65 4.3.3 Linearity 66 4.3.4 Isolation 66 4.4 3.1 to 8.0 GHz Mixer Design 67 4.5 UWB Mixer Simulation 68 CHAPTER 5 UWB RF Frond-End Measurement 73 5.1 Introduction 73 5.2 The overall Chip Layout and Measurement Consideration 74 5.2.1 RF Layout Consideration 74 5.2.2 RF Measurement Consideration 75 5.3 Measurement and Simulation 79 5.4 Comparison and Discussion 84 CHAPTER 6 Conclusions and Future Work 87 6.1 Conclusion 87 6.2 Future Work 88 Appendix I : Submitted Papers 89 Appendix II : All project chip design and Measurements. 91

    [1] M. Ghavami, L. B. Michael, and R. Kohno, UWB Signals and Systems in Communication Engineering Second Edition, John Wiley & Sons, Ltd, pp 251-262(2007).
    [2] "Multi-band OFDM Physical Layer Proposal," IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), http://grouper.ieee.org/groups/802/15/pub/2003/JulO3/03267 r5P802_15 TG3a-Multi-band-OFDM-CFP- Presentation. ppt.
    [3] "XtremeSpectrum CFP Presentation," IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), http://grouper.ieee.org/groups/802/15/pub/2003/Jul03/03 153r9P802 T.1 5H_.TG3Lae-eX,trTehmeeSpDeecstirgunm-oCfFPC-PMrOesSenRtaatdiioon-.Fprpetquency.
    [4] Multi-Band OFDM Physical Layer Proposal, IEEE 802.15-03/268r5, Nov. 2003.
    [5] Behzad Razavi, Turgut Aytur, Christopher Lam,Fei-Ran Yang, Kuang-Yu (Jason) Li, Ran-Hong (Ran) Yan, Han-Chang Kang, Cheng-Chung Hsu, and Chao-Cheng Lee “A UWB CMOS Transceiver,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 12, DEC. 2005.
    [6] Tero Koivisto, Janne Maunu and Esa Tiiliharju,“An Analog DS-UWB receiver,” IEEE, 2007.
    [7] Yongwang Ding and Ramesh Harjani, “High-Linearity CMOS RF Front-End Circuits,” Springer Science Business Media, 2005.
    [8] Trond Ytterdal, Yuhua Cheng and Tor A. Fjeldly , Device Modeling for Analog and RF CMOS Circuit Design, WILEY, 2003.
    [9] THOMAS H. LEE, The Design of CMOS Radio-Frequency Integrated Circuit Second Edition, Cambridge, pp 136-141(2004).
    [10] Daniel Kehrer, Design of Monolithic Integrated Lumped Transformers in Silicon-based Technologies up to 20 GHz, Thesis, Institut fur Nachrichtentechnik und Hochfrequenztechnik eingereicht an der Technischen Universitat Wien Fakultat fur Elektrotechnik, 2000.
    [11] John R Long, “Monolithic Transformers for Silicon RF IC Design”, IEEE Journal Solid-State Circuits, VOL. 35,NO.9,September 2000, pp1368-1382.
    [12] Dong Hun Shin, Jaejin Park, and C. Patrick Yue, “A Low-Power, 3–5-GHz CMOS UWB LNA Using Transformer Matching Technique,” IEEE Asian Solid-State Circuits Conference, November 12-14, 2007.
    [13] P. Andreani and H. Sjland, “Noise Optimization of an Inductively Degenerated CMOS Low Noise Amplifier,” IEEE Trans. on CAS– II: Analog and Digital Signal Processing, vol. 48, no. 9, pp. 835–841, Sept. 2001.
    [14] Yanjie Wang and Kris Iniewski, “A 4.7-10.5-GHz Ultra-wideband CMOS LNA Using Inductive Inter-stage Bandwidth Enhancement Technique,” IEEE,2006.
    [15] Razavi, “RF MICROELECTRONICS,” pp.16-22 (1998).
    [16] H. T. Friis, “Noise figure of radio receivers,” Proc. IRE, vol. 32, no. 7, pp. 419–422, Jul. 1944.
    [17] G. G. Rabjohn, “Monolithic microwave transformers,” M.Eng. thesis, Carleton University, Ottawa, ON, Canada, Apr. 1991.
    [18] Ting-Ping Liu and Eric Westerwick, “5-GHz CMOS Radio Transceiver Front-End Chipset,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 12, DECEMBER 2000.
    [19] Chun-Lin Kuo, Che-Chung Kuo, Chun-Hsien Lien, Jeng-Han Tsai, and Huei Wang, ” A Novel Reduced-Size Rat-Race Broadside Coupler and Its Application for CMOS Distributed Sub- Harmonic Mixer,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 18, NO. 3, MARCH 2008.
    [20] Hooman Darabi and Janice Chiu, ” A Noise Cancellation Technique in Active RF-CMOS Mixers,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 12, DECEMBER 2005.
    [21] Ting-Ping Liu and Eric Westerwick, “5-GHz CMOS Radio Transceiver Front-End Chipset,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 12, DECEMBER 2000.
    [22] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, May 1997.
    [23] Haitao Gan, ON-CHIP TRANSFORMER MODELING, CHARACTERIZATION, AND APPLICATIONS IN POWER AND LOW NOISE AMPLIFIERS, Thesis, THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSIT, 2006.
    [24] Zhe-Yang Huang, Che-Cheng Huang, Chun-Chieh Chen, Chung-Chih Hung and Christina F. Jou, “CMOS Low-Noise Amplifier with Shunt-Peaking Load for Group 1~3 MB-OFDM Ultra-Wideband Wireless Receiver,” IEEE, 2008.
    [25] Yun-A Shim, Jeongseon Lee, Sek-Kyun Han and Sang-Gug Lee, “Low Noise RF Front-End Receiver for 3~5 GHz UWB,” ICACT, Feb. 17-20, 2008.
    [26] Dong Hun Shin, Jaejin Park and C. Patrick Yue, “A Low-Power, 3–5-GHz CMOS UWB LNA Using Transformer Matching Technique,” IEEE Asian Solid-State Circuits Conference, 2007.
    [27] Takao Kihara, Toshimasa Matsuoka and Kenji Taniguchi, “A 1.0 V, 2.5 mW, Transformer Noise-Canceling UWB CMOS LNA,” IEEE Radio Frequency Integrated Circuits Symposium, 2008.
    [28] 陳冠宏, 適用於超寬頻接收機之互補式金氧半寬頻低雜訊放大器設計與實作, 國立臺灣大學, 中華民國九十三年六月.
    [29] 陳玟蕙,於互補式金氧半導體製程之對稱立體式被動元件及壓控震盪器設計,國立中央大學,中華民國九十二年七月.
    [30] 李建鋒,應用於無線區域網路之5.25 GHz CMOS 差動式低雜訊放大器,中華大學,中華民國九十二年七月.
    [31] 曾卿銘,3.1~10.6 GHz 超寬頻接收機前端電路之研究,國立中央大學,中華民國九十五年七月.
    [32] PUSHKAR SHARMA, DESIGN OF A 3.1-4.8 GHz RF FRONT-END FOR AN ULTRA WIDEBAND RECEIVER, Texas A&M University, May 2005.
    [33] Hui Zheng, Shuzuo Lou, Dongtian Lu, Cheng Shen, Tatfu Chan, and Howard C. Luong, “A 3.1 GHz–8.0 GHz Single-Chip Transceiver for MB-OFDM UWB in 0.18-μm CMOS Process,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 2, FEBRUARY 2009.
    [34] Shu-Jun Pan, Wen-Yan Yin and Le-Wei Li, Comparative Investigation on Various On-Chip Center-Tapped Interleaved Transformers, Wiley Periodicals, Inc, 2004.
    [35] Tuan-Anh Phan, Chang-Wan Kim and Sang-Gug Lee, “ Gain Mismatch-Balanced I/Q Down-Conversion Mixer for UWB,” ISCAS, 2006.
    [36] Kihwa Choi, Dong Hun Shin, and C. Patrick Yue, “A 1.2-V, 5.8-mW, Ultra-Wideband Folded Mixer in 0.13-μm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, 2007.
    [37] Sheng-Che Tseng, Chinchun Meng, Chia-Hung Chang, Chih-Kai Wu and Guo-Wei Huang, “Monolithic Broadband Gilbert Micromixer With an Integrated Marchand Balun Using Standard Silicon IC Process,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 12, DECEMBER, 2006.
    [38] Tsung-Yu Yang, Hsin-Lung Tu and Hwann-Kaeo Chiou, “Low-voltage High-linear and Isolation Transformer Based Mixer for Direct Conversion Receiver,” IEEE ISCAS, 2006.
    [39] Bo Shi and Michael Yan Wah Chia, “A CMOS Receiver Front-End for 3.1-10.6 GHz Ultra-Wideband Radio”, Proceedings of the 3rd European Radar Conference, September 2006.
    [40] Aminghasem Safarian, Lei Zhou, and Payam Heydari, “A Distributed RF Front-End for UWB Receivers,” IEEE Custom Intergrated Circuits Conference, 2006.
    [41] Bo Shi and Michael, Yan Wah Chia, “A 3-10-GHz 0.13-pm CMOS Receiver Front-End for MB-OFDM Ultra-Wideband Systems,” IEEE, 2007..
    [42] Bo Shi and Michael Yan Wah Chia, “An Ultra-Wideband CMOS Receiver Front-End”, EuMA Proceedings of the 10th European Conference on Wireless Technology, September 2007.
    [43] Zi-Hao Hsiung, Hui-I Wu and Christina F Jou, “A 3-8 GHz RF Receiver Front-End for Multi-Band UWB Wireless System,” IEEE Proceedings of Asia-Pacific Microwave Conference, 2007.
    [44] Yun-A Shim, J. Lee, S.K. Han and S.G. Lee, “Low Noise RF Front-End Receiver for 3~5 GHz UWB,” ICACT, Feb. 2008.
    [45] 徐銘均,應用於超寬頻系統之射頻前端電路晶片設計,國立臺灣科技大學電子工程系研究所碩士論文,中華民國九十六年。
    [46] Chang-Tsung Fu and Chien-Nan Kuo, “3~11-GHz CMOS UWB LNA Using Dual Feedback for Broadband Matching”, Institute of Electronics, National Chiao-Tung University.
    [47] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, Second edition, 2004.
    [48] Yu-Tso Lin, Hsiao-Chin Chen, Tao Wang, Yo-Sheng Lin, and Shey-Shi Lu, “3–10-GHz Ultra-Wideband Low-Noise Amplifier Utilizing Miller Effect and Inductive Shunt–Shunt Feedback Technique,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 9, SEPTEMBER, 2007.
    [49] J. Park, C.H. Lee, B.S. Kim, and J. Laskar, “Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 12, Dec. 2006.
    [50] Shih-Fong Chao, Jhe-Jia Kuo, Chong-Liang Lin, Ming-Da Tsai, and Huei Wang, “A DC-11.5 GHz Low-Power, Wideband Amplifier Using Splitting-Load Inductive Peaking Technique,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 18, NO. 7, JULY 2008.
    [51] Ramesh Harjani and Liuchun Cai, “Inductorless Design of Wireless CMOS Frontends”, IEEE, 2007.
    [52] Vojkan Vidojkovic, Johan van der Tang, Arjan Leeuwenburgh, and Arthur H. M. van Roermund, “A Low-Voltage Folded-Switching Mixerin 0.18-μm CMOS,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 6, JUNE 2005.

    無法下載圖示 全文公開日期 2013/07/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE