簡易檢索 / 詳目顯示

研究生: 王世華
Shi-hua Wang
論文名稱: 鋼筋混凝土構件平面應力配筋及轉化直桿元素穩定所需剪力元素探討
Reinforced concrete member plane stress design and required shear elements for transform plane stress element
指導教授: 潘誠平
Chan-Ping Pan
口試委員: 邱建國
none
林英俊
none
歐昱辰
none
張順益
none
姚忠達
none
郭世榮
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 150
中文關鍵詞: 鋼筋混凝土設計平面應力剪力設計剪力元素
外文關鍵詞: reinforced concrete design, plane stress model, shear stress design, shear element
相關次數: 點閱:185下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文包括兩部分,第一部分為研擬一套適用於平面應力構件之配筋規則,除了強度檢查方式的推導外,並以傳統細長構件中較適合以平面應力問題分析之深梁、牆、版殼為驗證資料,對所發展之平面應力配筋規則除了對相同問題能符合現行法規之設計要求外,亦將一體適用於各種形狀的平面應力構件,而不同於法規只局限某幾種形狀。亦針對各種結構模式,如細長桿件、平面應力、平面應變等做一簡介,並深論以不恰當模式分析之缺點所在,由此指出現行設計法則之缺失。除了與現行規範之設計結果比較外,亦與試驗結果加以比較,試驗之過程及觀測方法文中亦加以詳述。並自行發展簡化有限元素法模式之程式以探討混凝土開裂後應力狀態。
    第二部分為發展出鋼筋混凝土平面應力元素轉換為等效軸力桿件所需之剪力元素,探討以獨立的軸力元素取代一個連續體以及相關的剪力元素問題。以四周四支軸力桿件的基礎上探討剪力元素的模擬,本文總共提出三種方法,三種方法皆有完整的推導與對應之程式,並以例題探討其模擬之精度,配合三種方法所發展的程式具有良好的繪圖能力及資料推展,因此可以極少量的控制資料做出多種問題的模擬,本文亦將程式的發展與成果以例題顯現。


    This study developed a set of plane stress components applied to the reinforcement rules, apart from the inspection of the deduced intensity, but also the traditional elongated to fit more components in plane stress analysis problem of deep beams, walls, version of the shell in order to verify the information, For the development of reinforced concrete plane stress problem of the same rules except to comply with current design requirements and regulations, will be one-size-fits all shapes in the plane stress components, and different laws and regulations is confined to certain kinds of shapes.

    In this paper, also for various structure models, such as slender beam, plane stress, plane strain, such as make one brief introduction, and found it on to the appropriate mode of analysis does not disadvantage the host, which pointed out that the deletion of the current design rules.

    Except with the existing norms of design results, but also with one to compare the test results, test the process and methods of observation have to be detailed in the text. And one on its own development model of finite element method stress state after the concrete cracks.

    Simplified elements are often used to simulate reinforced concrete members and walls. Since cracking and nonlinear material behavior makes the simulation complex and difficult, therefore a simplified model with nonlinear abilities is suitable for this kind of material. This article explores the possibilities to use independent truss elements for normal stresses and inde-pendent shear elements for shear stress. The plane stress problem is used as the example to examine the developed shear elements. Three types of shear elements are developed in this study. The derivations and corresponding programs are shown in this paper also. Three ex-amples are illustrated to compare the three shear elements. The developed programs own effi-cient data generation and good drawing capacities.

    摘要I ABSTRACTIII 誌謝V 目錄VI 圖表索引XI 符號索引XX 第1章 序論1 1.1 研究動機1 1.2 研究目的及研究方法2 1.3 文獻回顧3 1.4 研究內容5 第2章 理論基礎7 2.1 混凝土模型的研究7 2.1.1 混凝土單軸作用之應力–應變分析8 2.1.2 混凝土雙軸作用之應力–應變分析10 2.1.3 混凝土平面應力行為11 2.1.4 混凝土三軸作用之應力–應變分析12 2.2 有限元素法12 2.2.1 平面應力四點元素14 2.2.2 二點線性軸力元素16 2.3 以桁架模式進行簡化17 2.4 移動式最小平方和法17 2.5 ACI規範之規定21 2.5.1 簡支深梁抗剪設計特殊條款21 2.5.2 連續深梁抗剪設計特殊條款23 2.5.3 深腹梁之配筋24 2.5.4 鋼筋排列之規定24 2.5.5 牆設計之剪力特別規定25 2.6 分析模式適用性之討論27 2.6.1 以細長桿件模式模擬之盲點28 2.6.2 以線彈性分析結果進行設計盲點30 第3章 以數值分析進行鋼筋混凝土探討43 3.1 以線性平面應力分析鋼筋混凝土45 3.1.1 利用SAP2000建立線性平面應力模式45 3.1.2 線性平面應力元素輸出結果整理47 3.2 以非線性Link及線性混凝土來進行混凝土分析48 3.2.1 Link之力學性質之建立觀念49 3.2.2 非線性Link輸出結果整理50 3.3 混凝土平面應力配筋推導與設計51 3.3.1 建議流程51 3.3.2 主應力方向設計之思考52 3.3.3 最大主應力52 3.3.4 最小主應力54 3.3.5 混凝土強度55 3.3.6 鋼筋應力56 3.3.7 設計方向各斷面鋼筋面積需求57 3.3.8 平面應力基本配筋假設58 3.3.9 積分網格區域之界定59 3.4 平面應力配筋法則實例60 3.4.1 平面應力輸出結果整理61 3.4.2 以平面應力配筋進行實例配筋62 3.4.3 ACI規範進行實例配筋64 3.4.4 平面應力配筋與ACI配筋之討論65 3.5 平面應力配筋法與試驗之比較66 3.5.1 試驗準備工作66 3.5.2 試驗設備(如圖3.52)68 3.5.3 試驗所得數據69 3.5.4 平面應力配筋法預測桿件能承受之力量步驟69 3.5.5 試驗結果與平面應力之探討70 3.6 以影相監測進行鋼筋混凝土探討71 3.6.1 實驗室鋁桿量測71 3.6.2 混凝土實驗室影像量測73 3.6.3 混凝土實驗室影像量測結果73 第4章 平面應力元素轉換為等效軸力桿件所需之剪力元素118 4.1 模式簡介119 4.2 以內插函數推導出之剪力元素120 4.3 以中心點剪應變能推導出之剪力元素122 4.4 交叉斜桿剪力元素124 4.5 程式計算流程126 4.6 實例分析128 4.6.1 懸臂梁自由端承受向下集中力128 4.6.2 簡支梁中央承受向下集中力129 4.6.3 兩端固定端中央承受向下集中力之梁129 4.7 網格細分後是否有助於答案精確度130 第5章 結論與建議146 5.1 結論146 5.2 未來展望及建議149 參考文獻151 附錄158 作者簡介169

    【1】“Building Code Requirements for Structural Concrete with Design Application,” ACl 318–95.
    【2】H. B. Kupfer, H. K. Hilsdorf and H. Rusch, (1969), “Behavior of concrete under biaxial stresses,” ACI Journal, Vol. 66, pp.556-566.
    【3】D. Darwin and D. A. Pecknold, (1977), “(a)Analysis of cyclic loading of plane reinforced concrete structures,”J. of Computer and Structures, Vol. 7, pp.137–147, “(b)Non–Linear biaxial stress–strain law for concrete,” J. of Engg. Mech.Div.ASCE , Vol. 103, pp.229–249.
    【4】Lin, Ts'ung-wu (2006), “The required reinforcement for a three-dimensional concrete structure”, forum for the solid and structural engineering calculations, J-1~J14.
    【5】M. N. Fioalkow (1990), “Behavior of Reinforced Concrete Membranes with Compatible Stress and Cracking”, ACI Structural Journal, 87(5), 571-582.
    【6】M. N. Fioalkow (1991), “Compatible Stress and Cracking in Reinforced Concrete Membranes with Multidirectional Reinforcement”, ACI Structural Journal, 88(4), 445-457.
    【7】Cardenas, A., Clyde D. H., Hilleborg, A., Lenkei, P., and Authors, Discussion of “A Yield Criterion for Reinforced Concrete Slabs” by Rolf J. Lenschow and Mete A. Sozen, ACI Journal, Proceedings V.64, No.11, Nov 1967, pp.783–789.
    【8】Lenschow, R. J., and Sozen, M. A., “A Yield Criterion for Reinforced Concrete Siabs,” ACI Journal, May 1967, pp.266–273.
    【9】Cardenas, A. E., and Sozen, M. A., “Flexural Yield Capacity of Siabs,” ACI Journal, February 1973, pp.124–126.
    【10】Jain, S. C., and Kennedy, J. B.,“Yield Criterion for Reinforced Concrete Slabs,” Journal of the Structural Division, ASCE, March 1974, pp. 631–644.
    【11】Morley, C. T., “Experiments on the Yield Criterion of Isotropic Reinforced Concrete Slabs,” ACI Journal, Vol. 64, No1, Jan 1967, pp.40–45.
    【12】Bazant, Z. P., and Tsubaki, T., “Concrete Reinforcing Net:0ptimum Slip–Free Limit Design,” Journal of the Structural Division, ASCE, February 1979, pp.327–345.
    【13】Bazant, Z. P., Gambarova, P., “Rough Cracks in Reinforced concrete,” Journal of the Structural Division, ASCE, Vol. 106, No. ST4, April 1980, pp.819–842.
    【14】Bazant, Z. P., Tsubaki, T., and Belytschko, T.B., “Concrete Reinforcing Net:Safe Design,” Journal of the Structural Division, ASEC, Vo1. 106, No. ST9, September 1980, pp.1899–1906.
    【15】Bazant, Z. P., and Tsubaki, T., “S1ip–Dilatancy Model for Cracked Reinforced Concrete,” Journal of the Structural Division, ASCE, Vo1. 106, No. ST9, September 1980, pp.1947–1966.
    【16】Bazant, Z. P., and Lin, C., “Concrete Plate Reinforcement:Fricional Limit De-sign,” Journal of the Structural Division, ASCE, Vo1. 108, No. STll, November 1982, pp.2443–2459.
    【17】Kong, F. K., Teng, S., Maimba, P. P., Tan, K. H. and Guan, L. W. (1994), “Single-Span, Continuous, and Slender Deep Beams Made of High-Strength Con-crete,” SP-149, American Concrete Institute, 413-431
    【18】Rogowsky, D. M., Macgregor J. G., and Ong, S. Y. (1986), “Tests of Reinforced Concrete Deep Beams,” ACI Journal, 83(4), 614-623.
    【19】Marti, P. (1985),"Basic Tools of Reinforced Concrete Beam Design “, ACI Journal, 82(1), 45 -56.
    【20】Reddy, D. V., and Murphree Jr, E. L., “Ultimate Load Analysis of Edge–Loaded Foundation Slabs,” The Structural Engineer, Vo1. 46, No. 1, January 1968, pp.13–16.
    【21】Rao, K. S. S., “Rangaiah, N., and Ranganatham B. V., “Lower Bound Limit Analysis of Rectangular Slabs,” Journal of the Strructural Division, ASCE, Vo1. 103, No. ST11, Novamber 1977, pp.2193–2209.
    【22】Rao, K. S. S., Rangaiah, N.,and Ranganatham B. V., “Lower Bound Limit Analysis of Rectangular Slabs,” Journal of the Structural Division, ASCE, Vol. 108, No. ST8, August 1982, pp.1739–1750.
    【23】Rao, K. S. S., Rangaiah, N., and Ranganatham B. V., “Limit Analysis of Slabs with Free Edge,” Journal of the Structural Division, ASCE, Vo1. 105, No. ST11, No-vember 1979, pp. 2419–2431.
    【24】Nawy, E. G., and Orenstein, G. S., “Crack Width Control in Reinforced Concrete Two–way Slabs,” Journal of the Structural Division, ASCE, Vo1. 96, No. ST3, March 1970, pp.701–721.
    【25】Rangan, B. V.,“Lower Bound Solutios for Continuous Orthotropic Slabs,” Journal of the Structural Division, ASCE, Vo1. 99, No. ST3, March 1973, pp.443–452.
    【26】Rangan, B. V.,“Limit States Design of Slabs Using Lower Bound Approach,” Journal of the Structural Division, ASCE, Vo1. 100, No. ST2, Feb 1974, pp.373–389.
    【27】Gupta, A. K., and Sen, S., “Design of Flexural Reinforcement in Concrete Slabs,” Journal of the Structural Division, ASCE, April 1977, pp. 793–804.
    【28】Gupta, A. K., “Skew Reinforcement in Slabs,” Journal of the Structural Division, ASCE, Vo1. 104, No. ST8, Proc. Paper 13197, August 1978, pp.1317–1321.
    【29】Wood, R. H., “The Reinforcement of Slabs in Accordance with a Predetermined Field of Moment,” Concrete, Feb., Vo1. 2, No. 2, 1968, pp.69–76.
    【30】Armer G. S. T., Discussion of “The Reinforcement of Slabs in Accordance with a Predetermined Field of Slabs,” by Wood, R. H., Concrete, Aug. 1968, pp.319–320.
    【31】Morley, C. T.,“Skew Reinforcement of Concrete Slabs against Bending and Torsional Moments,” Proceedings of the Institution of Civil Engineers, Vo1. 42, Jan. 1969, pp. 57–74.
    【32】Morley, C. T.,“Optimum Reinforcement of Concrete Slab Elements,” The In-stitution of Civil Enguneers, Proceedings, Vo1. 63, Part 2, June, 1977, pp.441–454.
    【33】S. Mindess and J. F. Young, “Concrete,” Prentice–Hall, N. J., 1981.
    【34】E. Hognestad, “A Study of Combined Bending and Axial Load in Reinforced Concrete Members,” Bulletin No. 399, Engg, 1951. Experiment Station, U. of Illinois, Urbana, Ill., Ref. from M. Y. H. Bangash, “Concrete and Concrete Structures: Nu-merical Modelling and Applications,” Elsevier, 1989, pp.3.
    【35】F. E. Richart, A. Brandtazeg, and R. L. Brown,“A Study of the Failure of Con-crete under Combined Compressive Stress,” Bulletin No. 185, Engg Experiment Sta-tion, U. of Illnois, Urbana, Ill., 1928 , pp.104.
    【36】A., Ditommaso and G. C. Sih, “Fracture Mechanics of Concrete:Structural Application and Numerical Calculation,” Martinus Nijhoff Publishers, 1985, pp.414–170.
    【37】S. P. Shah and S. Chanda, “Critical Stress, Volumn Change and Micro–cracking of Concrete,” ACI Journal,Sept 1968.
    【38】L. Beres, “Relationship of Deformational Processes and Structure Change in Concrete,” Struct. Solid Mech. and Engg. Design, part2(Ed. TE’ENI), Wiley–Interscience,1971.
    【39】M. D. Kotovos and J. B. Newman,“Generalized Stress–strain Relations for Concrete,” ASCE, No. EM4, 1978, pp.845–856.
    【40】I. D. Karson and J. O. Jirsa, “Behavior of Concrete under Compressive Load-ings,” J. Struct. Div., ASCE, Vo1. 95, ST12, 1969, pp.2543–2563.
    【41】L. P. Saenz, “Equation for Stress–strain Curve of Concrete in uniaxial and Biaxial Compression of Concrete,” J. of ACI, Vo1. 61, 1965, pp.1229-1235.
    【42】M. Y. H. Bangash, “Concrete and Concrete Structures:Numerical Modelling and Applications,” Elsevier Applicated Science, London and N. Y., 1989, pp.8.
    【43】W. F. Chen and A. F. Saleeb, “Constitutive Equations for Engineering Materials, Vo1, 1 Elase\ticity and modelling,” Wilry, N. Y. 1982, pp.251–265.
    【44】B. Bresler and K. S. Pister, “Strength of Concrete under Complinca Stress,” ACI Journal, Sept 1958, pp.321–345.
    【45】H. J. Cowan, “The Strength of Plain, Reinforced and Prestressed Concrete under the Action of Combined Stress, with Particular Reference to the Combined Bending and Torsion of Rectangular Section,” Magazine of Concrete Research, No. 14, Dec. 1953, pp.75–86.
    【46】G. G. Balmer, “Shearung Strength of Concrete under High Triaxial Stress–computation of Moht’s Envelope as a crrve,” Structural Research Laboratory Report No. SP23, U. S. Bureau of Reclamation, 1949, pp.13.
    【47】Cook, R. D., Malkus, D. S. and M. E. Plesha, Concepts and applications of finite element analysis, Third edition, John Wiley & Sons, New York, 1989.
    【48】T.Belytschko,Y.Y.Lu and L.Gu,“Element Free Galerkin Method.”,International Journal for Numerical Method in Engineering,Vol.37,PP.229-256,(1994).
    【49】Nayroles, B., G. Touzot and P. Villon,”Generalizing the Finite Element Methods: Diffuse Approximation and Diffuse Elements,”Computational Mechanics, Vol.10,PP.307~318(1992).
    【50】許茂雄,劉白梅〈磚構造建築技術規則之研修及磚牆配置之探討〉,內政部建築研究所計畫編號:MOIS 901019(2001)。
    【51】D. Ngo and A.C.Scordelis,“Finite element analysis of reinforced concrete beams” J. Am.Concr. Inst.64 3, pp. 152–163 (1967).
    【52】Nilson, A. H., "Nonlinear Analysis of Reinforced Concrete by the Finite Ele-ment Method", Journal of the American Concrete Institute, Vol. 65, No. 9, pp. 757-766(1968).
    【53】Hwang, S. J., and Lee, H. J., “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, in press (2002).
    【54】Vecchio, F. J., and Collins, M. P., “Modified Compression Field Theory For Reinforced Concrete Elements Subjected to Shear,” ACI Journal, Proceedings Vol. 83, No. 2, March-April, pp.219-231 (1986).
    【55】Zhang, L. X., and Hsu, T. T. C., “Behavior and Analysis of 100Mpa Concrete Membrane Elements,” Journal of Structural Engineering, ASCE, Vol. 124, NO. 1 , January pp.24-34 (1998).
    【56】Leon, R. T. “Shear Strength and Hysteretic Behavior of interior Beam-Column Joints,” ACI Structural Journal, V. 89, No. 1, January- February (1990).
    【57】潘誠平、王世華,「鋼筋混凝土平面應力元素轉換為等效軸力桿件所需之剪力元素」,中國土木水利工程學刊,中國土木水利工程學會, 24(3), 253~265頁

    無法下載圖示 全文公開日期 2018/06/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE