簡易檢索 / 詳目顯示

研究生: 黃浲誠
Feng-Cheng Huang
論文名稱: 高強度鋼筋混凝土撓曲桿件在不同剪力筋型式下往覆載重行為
Cyclic Behaviors of High-Strength RC Flexural Members with Different Stirrup Configuration
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 歐昱辰
Yu-Chen Ou
廖文正
Wen-Cheng Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 83
中文關鍵詞: 高強度RC梁高強度橫向鋼筋高強度縱向鋼筋往覆載重剪力設計撓剪破壞撓曲破壞耐震箍筋
外文關鍵詞: High-Strength Reinforced concrete beams, high-strength transverse reinforcement, high-strength longitudinal reinforcement, cyclic loading, shear design, flexure-shear failure, flexure failure, seismic, stirrup
相關次數: 點閱:300下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討高強度鋼筋混凝土梁使用高強度焊接剪力鋼筋來代替135度耐震彎鉤剪力鋼筋的可行性,並驗證高強度剪力鋼筋使用設計強度550MPa是否合理。本論文共測試三座高強度鋼筋混凝土梁,實驗結果顯示焊接型剪力鋼筋比135度耐震彎鉤更有效的增進試體的變形能力與位移韌性,試體使用焊接型高強度剪力鋼筋的試體在VnL/Mpr=0.65的設計剪力強度可以達到極限層間位移量6.00%,增加VnL/Mpr至2.00會改變試體的破壞模式但是對提升層間位移量的影響有限,而高強度剪力鋼筋使用設計強度550MPa應屬合理,另外使用試體設計公式可以保守預測試體的彎矩強度。


    The potential of using welded high-strength steel as shear reinforcement in the high-strength reinforced concrete (RC) beam members is studied in this research. A total of three high-strength RC beam specimens are tested. Experimental results show that the specimen with welded hoops exhibits better deformation capacity and ductility compared to the specimen with seismic hoops consisting of 135 degree standard seismic hooks. With the provided shear-to-probable moment capacity of VnL/Mpr =0.65, the specimens with welded hoop failed at ultimate drift ratio of 6.00%. An increase of VnL/Mpr ratio to 2.00 does not improve the deformation capacity further but changes the failure mode from flexure-shear to flexure failure. Based on the observations, an upper bound of 550 MPa may be reasonable assumed as the designed strength of the high-strength stirrup, specifically SD785 high-strength steel. The proposed equations to evaluate the flexural strength of high-strength beam specimens also provide reasonable and conservative predictions.

    摘要 ABSTRACT 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 研究動機 1.3 研究目的 1.4 論文內容編排 第二章 文獻回顧 2.1 混凝土應力區塊 2.2 焊接型剪力鋼筋 2.3 高強度剪力鋼筋 第三章 試體規劃 3.1 試體設計 3.2 測試配置 3.3 量測系統配置 3.4 測試步驟 3.5 試體設計公式 第四章 試體結果與分析 4.1 前言 4.2 材料試驗 4.2.1 混凝土 4.2.2 高強度鋼筋 4.3 試體破壞模式 4.4 試體載重與位移行為曲線 4.4.1 試體之勁度衰減 4.4.2 試體能量消散能力 4.5 試體外部撓曲變形分析 4.6 應變計量測 4.7 試體設計公式結果 第五章 結論 參考文獻 附錄A 符號說明

    1.Municrishna, A.; Hosny, A.; Rizkalla,S.; and Zia, P., “Behaviour of Concrete Beams Reinforced with ASTM A1035 Grade 100 Stirrups under Shear,” ACI Structural Journal, V. 108, No. 1, Jan.-Feb., 2011, pp.34-41.

    2.Lin, C.H.; Lee, F.S., “Ductility of High-Performance Concrete Beams with High-Strength Lateral Reinforcement,” ACI Structural Journal, V. 98, No. 4, July-Aug.,2001, pp.600-608.

    3.Lee, J. Y.;Choi, I. J.; and Kim, S. W., “Shear Behavior of Reinforced Concrete Beams with High-Strength Stirrups.” ACI Structural Journal, V. 108, No. 5, Sept.-Oct.,2011, pp. 620-629.

    4.Sumpter, M. W.;Rizkalla, S. H.; and Zia,P., “Behavior of High-Performance Steel as Shear Reinforcement for Concrete Beams.” ACI Structural Journal, V. 106, No. 2, March-April, 2009, pp. 171-177.

    5.Mattock, A. H.; Kriz, L. B.; and Hognestad, E., “Rectangular Concrete Stress Distribution in Ultimate Strength Deisgn,” Journal of the American Concrete Institute, Vol. 57, No. 8, Feb., 1961, pp. 875-929.

    6.Whitney, C. S., “Design of Reinforced Concrete Members under Flexure or Combined Flexural and Direct Compression,” Journal of the American Concrete Institute, Proceedings Vol. 33, No. 3, March, 1937, pp. 483-498.

    7.Nedderman, H., “Flexrual Stress Distribution in Very High Strength Concrete,” M.S. thesis, Department of Civil Engineering, University of Texas, Austin, Texas, 1973, 182 pp.

    8.CSA A23.3-04, “Design of Concrete Structures,” Canadian Standards Association, Rexdale, Ontario, Canada, 2004, 232 pp.

    9.Mertol, H. C.; Rizkalla, S.; Zia, P.; and Mirmiran, A., “Characteristics of Compressive Stress Distribution in High-Strength Concrete,” ACI Structural Journal, Vol. 105, No. 5, Sept.-Oct., 2008, pp. 626-633.

    10.Khadiranaikar, R. B. and Awati, M. M., “Concrete Stress Distribution Factors for High-Performance Concrete,” Journal of Structural Engineering, Vol. 138, No. 3, March, 2012, pp. 402-415.

    11.Bae, S. and Bayrak, O., “Stress Block Parameters for High-Strength Concrete Members,” ACI Structural Journal, Vol. 100, No. 5, Sept.-Oct., 2003, pp. 626-636.

    12.Ibrahim, H. H. H. and MacGregor, J. G., “Modification of the ACI Rectangular Stress Block for High-Strength Concrete,” ACI Structural Journal, Vol. 94, No. 1, Jan.-Feb., 1997, pp. 40-48.

    13.Azizinamini, A.; Kuska, S. S. B.; Brungardt, P.; and Hatfield, E., “Seismic Behavior of Square High-Strength Concrete Columns,” ACI Structural Journal, Vol. 91, No. 3, May-June, 1994, pp. 336-345.

    14.Ozbakkaloglu, T. and Saatcioglu, M., “Rectangular Stress Block for High-Strength Concrete,” ACI Structural Journal, Vol. 101, No. 4, July-Aug., 2004, pp. 475-483.

    15.ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-56)”, American Concrete Institute, Detroit, Michigan, 1956, pp.913-986

    16.ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-71),” American Concrete Institute, Detroit, Michigan, 1971, 78 pp.

    17.ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-77)”, American Concrete Institute, Detroit, Michigan, 1977, 103 pp.

    18.ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, Farmington Hills, Mich., 2011, 503 pp.
    19.Saatcioglu, M.; Grira, M., “Confinement of Reinforced Concrete Columns with Welded Reinforcement Grids,” ACI Structural Journal, V. 96, No. 1, Jan.-Feb.,1999, pp.29-39.

    20.Aoyama, H., 2001, “Design of Modern High-Rise Reinforced Concrete Structures,” Series of Innovation in Structures and Construction, V. 3, Imperial College, London, 442 pp.

    21.ACI Innovation Task Group 4, 2007, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),” American Concrete Institute, Farmington Hills, Mich., 62 pp.

    22.Risser, B. and Humphreys, S.. 2008, “High-Strength Reinforcing Steel: Next Generation or Niche”, Concrete Construction, Jan,2008, Vol. 53 Issue 1, p57

    23.Risser, B. and Hoffman, M., 2011, “Reinforcing Congestion”, Concrete Construction, Jan,2011, Vol. 56 Issue 1, p16.

    24.ASTM A706/A706M-13, “Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.”ASTM International, West Conshohocken, PA, 2013, 7 pp.

    25.ASTM A1035/A1035M-13, “Standard Specification for Deformed and Plain,Low-Carbon, Chromium, Steel Bars for Concrete Reinforcement.”ASTM International, West Conshohocken, PA, 2013, 6 pp.

    QR CODE