簡易檢索 / 詳目顯示

研究生: 陳永得
Yung Te Chen
論文名稱: 開發基於虛擬醫療手術的變形模擬和力回饋系統及其穩定性最佳化設計
Development of Deformation Simulation and Haptic Feedback based on Virtual Surgical and its Stability Optimization Design
指導教授: 許昕
Hsin Hsiu
陳炳男
Ping-Nan Chen
口試委員: 許維君
Wei-Chun Hsu
鍾武勳
Wu-Hsun Chung
林世崧
Shih-Sung Lin
李汶墾
Wen-Ken Li
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 觸覺力回饋虛擬實境模糊無源控制虛擬手術穩定性最佳化
外文關鍵詞: Haptic Feedback, Virtual Reality, Fuzzy Passivity Control, Virtual Surgical, Stability Optimization
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,許多學者投入研究醫療虛擬實境,尤其是在手術模擬領域。然而,在手術模擬過程中,觸覺力回饋穩定性對於操作的成功與否至關重要。因此,國際上有許多學者致力於探討觸覺力回饋穩定性以及醫療虛擬實境的相關研究。這些研究皆在提高虛擬實境在醫療手術模擬中的準確性和可靠性。本論文旨在開發一個虛擬醫療手術系統作為應用平台,解決變形模擬和力回饋穩定性最佳化等問題。該系統包含精確的碰撞偵測、即時物理變形、觸覺回饋機制和互動式視覺操作等功能。為了實現更逼真的效果,我們採用了質量彈簧模型作為變形模型,並提出基於距離傳播模式的變形物體形狀呈現方法,使其更接近實際物體的物理變化。為驗證系統的便利性和有效性,我們構建了一個基於觸覺的醫療手術模擬變形系統作為應用實例,並完成系統的整合測試和變形模型的可行性和逼真性的驗證。
    此外,我們使用基於能量概念的無源耗散理論(Passivity Theory)來探討虛擬觸覺系統中的力回饋穩定性問題。為了改善觸覺力回饋系統的主要缺點,我們設計了一個阻尼式無源控制器(Impedance-Passivity Controller, IPC),通過模型參數選擇實現系統穩定性和控制增益。另外,我們也設計專屬機械手臂取代單自由度(one-DOF sticking)人為施力方式,以達到實驗的一致性。實驗結果證明,相對於基本無源性系統,所提出的IPC可以實現更快速的穩定控制。然而,IPC需要預先確定觸覺設備和虛擬環境的參數值,因此,我們使用無源耗散理論為基礎,配合模糊控制(Fuzzy Control)的能量預估能力和雙向能量補償優勢,進行IPC控制器優化和穩定性最佳化設計,以改進虛擬物件因負阻尼係數和高彈簧係數而造成的震盪和發散。最後,實驗結果證明模糊無源控制器(Fuzzy-Passivity Controller, FPC)在虛擬實境力回饋穩定響應上具有較佳的控制性能。


    In recent years, many scholars have dedicated their efforts to researching medical virtual reality, particularly in the field of surgical simulation. However, the stability of haptic feedback during surgical simulation is crucial to the success of the operation. Therefore, many international scholars have focused on investigating the stability of haptic feedback and its relevance to medical virtual reality research. These studies aim to improve the accuracy and reliability of virtual reality in medical surgical simulation. This study develops a virtual medical surgical system as an application platform to address deformation simulation and force feedback stability issues, including the following functions: precision collision detection, real-time physical deformation, realistic force feedback, and interactive visual operation. The mass-spring model and distance-oriented concept of force propagation are used to describe physical deformation. In conclusion, to validate the system’s convenience and effectiveness, a brain virtual surgical platform is constructed to validate the designed function modules.
    In addition, we use energy-based passivity theory to explore force feedback stability in virtual haptic systems. We design an Impedance-Passivity Controller (IPC) to improve some haptic feedback shortcomings and achieve system stability and control gain through model parameter selection. We also design a dedicated robotic arm to replace the one-DOF sticking force method for consistency in the experiment. The results show that IPC can achieve faster stable control than the basic passive system. However, IPC requires predefined parameter values of haptic devices and virtual environments. Therefore, we propose a fuzzy-passivity theorem to study the stability of force feedback of virtual haptic system. The fuzzy-passivity controller can be designed to improve the chief defect, which must spend longer time reaching steadily if consumed energy of the equipment is slow, from the two-port network point of view. Finally, compare with basic passivity, rapidly stable control is achieved under the fuzzy-passivity control.

    目錄 博士學位論文指導教授推薦書 I 博士學位考試委員審定書 II 摘要 III Abstract IV 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究範圍與研究架構 3 1.4 論文內容結構 5 第2章 以力回饋為基之互動式變形模擬開發架構 6 2.1 背景介紹 6 2.2 系統架構 7 2.3 系統運作流程 9 2.4 變形流程 11 2.4.1 質量彈簧模型 11 2.4.2 以距離概念的傳播模型 12 2.5 力回饋機制 13 2.5.1 力回饋設備整合 13 2.5.2 觸覺力回饋計算 13 2.5.3 最佳傳播估測 14 2.6 系統元件功能實驗 15 2.6.1 觸覺模擬(Haptic Simulation) 15 2.6.2 最佳傳播估測與變形模擬 17 2.7 系統實作與整合測試 19 2.7.1 系統元件開發 19 2.7.2 整合測試 20 2.8 小結 22 第3章 阻尼式無源耗散控制器應用於觸覺穩定性分析 23 3.1 背景說明 23 3.2 控制架構設計 24 3.3 阻尼式無源控制器的設計 25 3.3.1 耗散理論(Passivity Theory) 25 3.3.2 阻尼式無源控制器設計 27 3.4 實驗平台與整合測試 28 3.4.1 實驗平台 28 3.4.2 以機械手臂執行一維度之切割行為 29 3.5 實驗結果與分析 30 3.5.1 Case I:正阻尼係數(Positive Damping) 30 3.5.2 Case II:負阻尼係數(Negative Damping) 31 3.5.3 Case III:高彈簧係數(High Stiffness) 33 3.5.4 分析比較 34 3.6 小結 35 第4章 模糊無源控制應用於虛擬實境觸覺力回饋之穩定性研究 36 4.1 背景說明 36 4.2 控制架構設計 37 4.3 模糊無源控制器的設計與實現 38 4.4 模擬與分析 41 4.4.1 Matlab模擬 41 4.4.2 模擬環境 42 4.4.3 模擬結果分析 42 4.5 實驗結果與分析 46 4.6 小結 50 第5章 結論 51 5.1 論文總結 51 5.2 重要研究成果 51 5.2.1 具觸感回饋功能之虛擬醫療手術平臺模組化架構設計 52 5.2.2 具手術行為之觸覺穩定控制器之設計 53 5.2.3 系統實作、整合測試及虛擬醫療應用實例之建立: 53 5.3 未來研究方向 54 參考文獻 55

    參考文獻
    [1]Azuma RT, Baillot Y, Behringer R and Feiner SK. Recent advances in augmented reality. IEEE Computer Graphics and Applications 2001, 21(6): 34-47.
    [2]Burdea GC. The Synergy between virtual reality and robotics. IEEE Trans. on Robotics and Automation 1999, 15(3): 400-410.
    [3]Kuhnapfel U, Krumm H, Kuhn C, Hubner M and Neisius B. Endosurgery simulations with KISMET: a flexible tool for surgical instrument design, operation room planning and VR technology based abdominal surgery training. In: Virtual Reality World '95: Conference Documentation, Stuttgart, 21.-23. February 1995, pp. 165–171.
    [4]Çakmak HK and Kühnapfel U. Animation and simulation techniques for VR-training systems in endoscopic surgery. In: Eurographics Workshop on Computer Animation and Simulation, Interlaken/Switzerland 2000, pp. 173-185.
    [5]Kühnapfel U, Çakmak HK and Maass H. Endoscopic surgery training using virtual reality and deformable tissue simulation. Computers & Graphics 2000, 24(5): 671-682.
    [6]Tahmasebi AM, Abolmaesumi P, Thompson D and Hashtrudi-Zaad K. Software structure design for a haptic-based medical examination system. In: IEEE International Workshop on Haptic Audio Visual Environments and their Applications, Ottawa, Ontario, Canada 2005, pp. 89-94.
    [7]Abolmaesumi P, Hashtrudi-Zaad K, Thompson D and Tahmasebi A. A haptic-based system for medical image examination, In: International Conference of the IEEE EMBS, San Francisco, CA, USA 2004, pp. 1853-1856.
    [8]Bernardo A, Preul M, Zabramski J and Spetzler R. A Three-dimension interactive virtual dissection model to simulate transpetrous surgical avenues. Neurosurgery 2003, 52(3): 499-505.
    [9]Spicer MA and Apuzzo M. Virtual reality surgery: neurosurgery and the contemporary landscape. Neurosurgery 2003, 52(3): 489-496.
    [10]Choi KS, Sun H and Heng PA. An efficient and scalable deformable model for virtual reality-based medical applications. Artifical Intelligence in Medicine 2004, 32:51-69.
    [11]Dimaio S and Salcudean S. Interactive simulation of needle insertion models. IEEE Trans. on Biomedical Engineering 2005, 52(7): 1167-1179.
    [12]Heng PA. Wong TT, Yang R, Chui YP, Xie YM, Leung KS and Leung PC. Intelligent inferencing and haptic simulation for Chinese acupuncture learning and training. IEEE Trans. on Information Technology in Biomedicine 2006, 10(1): 28-41.
    [13]Kuchenbecker KJ, Fiene J and Niemeyer G. Improving contact realism through event-based haptic feedback. IEEE Trans. on Visualization and Computer Graphics 2006, 12(2): 219-230.
    [14]Colgate JE, Stanley MC and Brown JM. Issues in the haptic display of tool use. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, Pittsburgh, PA 1995, pp. 140-145.
    [15]Colgate JE and Schenkel G. Passivity of a class of sampled data systems: application to haptic interfaces. In: American Control Conference, Baltimore, MD 1994, pp. 3236-3240.
    [16]Miller BE, Colate JE and Freeman RA. Environment delay in haptic systems. In: Proc. IEEE Int. Conf. Robot. Automat, San Francisco, CA, April 2000, pp. 2434-2439.
    [17]Anderson RJ and Spong MW. Asymptotic stability for force reflecting teleoperators with time delay. Int. Journal of Robotics Research 1992, 11(2): 135-149.
    [18]Ryu JH, Kim YS, Hannaford B. Sample and continuous time passivity and stability of virtual environments. In: Proc. IEEE Int. Conf. Robot. Autom., Taipei, Taiwan 2003, pp. 14-19.
    [19]Bellman RE and Zadeh LA. Decision making in a fuzzy environment. Management Science 1970, 17(4): B141-B164.
    [20]Hagan MT, Demuth HB and Beale M. Neural Network Design. PWS Publishing Co., Boston 1996.
    [21]Basdogan C and Srinivasan MA. Haptic rendering in virtual environments. In: Handbook of virtual environments. Lawrence Earlbaum, Inc. 2002. pp. 117–34.
    [22]Avila RS and Sobierajski LM. A haptic interaction method for volume visualization. In: Proc seventh IEEE visualization’96 1996, pp. 197–204.
    [23]Dachille F, Qin H and Kaufman AE. A novel haptic-based interface and sculpting system for physical-based geometric design. Computer-Aided Design 2001, 33(5): 403–420.
    [24]Laehyun K, Sukhatme GS and Desbrun M. A haptic-rendering technique based on hybrid surface representation. IEEE Computer Graphics and Applications 2004, 24(2): 66–75.
    [25]Gorman P, Krummel T, Webster R, Smith M and Hutchens D. A prototype haptic lumbar puncture simulator. In: Proc medicine meets virtual reality 2000, pp. 106–109.
    [26]DiMaio SP and Salcudean SE. Interactive simulation of needle insertion models. IEEE Transactions on Biomedical Engineering 2005, 52(7): 1167–1179.
    [27]Dang T, Annaswamy TM and Srinivasan MA. Development and evaluation of an epidural injection simulator with force feedback for medical training. In: Proc medicine meets virtual reality 2001, pp. 97–102.
    [28]Berkley J, Turkiyyah G, Berg D, Ganter M and Weghorst S. Real-time finite element modeling for surgery simulation: An application to virtual suturing. IEEE Transactions on Visualization and Computer Graphics 2004, 10(3): 314–325.
    [29]Choi KS, Sun H, Heng PA and Zou J. Deformable simulation using force propagation model with finite element optimization. Computers & Graphics 2004, 28(4): 559–568.
    [30]Zhang Y, Prakash EC and Sung E. A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh. IEEE Transactions on Computer Graphics 2004, 10(3): 339–352.
    [31]Choi KS, Sun H and Heng PA. Interactive deformation of soft tissues with haptic feedback for medical learning. IEEE Transactions on Information Technology in Biomedicine 2003, 7(4): 358–363.
    [32]Basdogan C, De S, Kim J, Muniyandi M, Kim H and Srinivasan MA. Haptics in minimally invasive surgical simulation and training. IEEE Computer Graphics and Applications 2004, 24(2): 56–64.
    [33]Bro-Nielsen M. Finite element modeling in surgery simulation. In: Proceedings of the IEEE 1998, 86(3): 490–503.
    [34]Greminger MA and Nelson BJ. Deformable object tracking using the boundary element method. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2003, Madison, WI, USA, pp. 289–294.
    [35]Greminger MA, Sum Y and Nelson BJ. Boundary element deformable object tracking with equilibrium constraint. In: Proceedings of International Conference on Robotics and Automation 2004, New Orleans, LA, USA, pp. 3896–3901.
    [36]Meier U, Lopez O, Monserrat C, Juan MC and Alcaniz M. Real-time deformation models for surgery simulation: A survey. Computer Methods and Programs Biomedicine 2005, 77(3): 183–197.
    [37]SensAble Technologies. http://www.sensable.com/haptic-phantom-omni. html.
    [38]Booch G, Rumbaugh J and Jacobson I. The unified modeling language guide. Addison-Wesley; 1999.
    [39]Lin MC and Gottschalk S. Collision detection between geometric models: a survey. In: Proceedings of IMA conference on mathematics of surfaces. 1998. pp. 119–135.
    [40]Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D and Sevdalis N. The use of simulation in neurosurgical education and training: a systematic review. Journal of Neurosurg 2014, 121(C2): 228–246.
    [41]Breimer GE, Haji FA, Bodani V, Cunningham MS, Lopez-Rios AL, Okrainec A and Drake JM. Simulation-based education for endoscopic third Ventriculostomy: a comparison between virtual and physical training models, Operative Neurosurgery 2017, 13(1): 89–95.
    [42]Weghorst S, Airola C, Oppenheimer P, Edmond CV, Patience T, Heskamp D and Miller J. Validation of the Madigan ESS Simulator. Studies in Health Technology and Informatics 1998, 50: 399–405.
    [43]Neubauer A, Wolfsberger S, Forster MT, Mroz L, Wegenkittl R and Buhler K. Advanced virtual endoscopic pituitary surgery. IEEE Transactions on Visualization and Computer Graphics 2005, 11(5): 497–507.
    [44]Tolsdorff B, Pommert A, Höhne KH, Petersik A, Pflesser B, Tiede U and Leuwer R. Virtual reality: a new paranasal sinus surgery simulator. Laryngoscope 2009, 120(2): 420–426.
    [45]Won TB, Wang PH, Lim JH, Cho SW, Paek SH, Losorelli S, Yona V, Chan S and Blevins NH. Early experience with a patient-specific virtual surgical simulation for rehearsal of endoscopic skull-base surgery. International forum of allergy & rhinology 2018, 8(1): 54–63.
    [46]Ferraguti F, Preda N, Manurung A, Bonfe M, Lambercy O, Gassert R, Muradore R, Fiorini P and Secchi C. An energy tank-based interactive control architecture for autonomous and teleoperated robotic surgery. IEEE Transactions on Robotics 2015, 31(5): 1073-1088.
    [47]Menaker SA, Shah SS, Snelling BM, Sur S, Starke RM and Peterson EC. Current applications and future perspectives of robotics in cerebrovascular and endovascular neurosurgery. Journal of NeuroInterventional Surgery 2018, 10(1): 78-82.
    [48]Meli L, Pacchierotti C and Prattichizzo D. Sensory subtraction in robot-assisted surgery: Fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction, IEEE Transactions on Biomedical Engineering 2014, 61(4): 1318-1327.
    [49]Agus M, Giachetti A, Gobbetti E and Zanetti G. Realtime haptic and visual simulation of bone dissection. In: Proceedings IEEE Virtual Reality 2002, Orlando, FL, USA, pp. 209-216.
    [50]Marshall P, Payandeh S and Dill J. A Study on Haptic Rendering in a Simulated Surgical Training Environment, In: 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 2006, Alexandria, VA, USA, pp. 241–247.
    [51]Cogate JE, Stanley MC and Brown JM. Issues in the haptic display of tool use. In: Proceedings 1995 IEEE/RSJ International conference on intelligent robots and systems. human robot interaction and cooperative robots, Pittsburgh, PA, 5–9 August 1995, pp.140–145. New York: IEEE.
    [52]Hannaford B and Ryu J. Time-domain passivity control of haptic interfaces. IEEE Trans Robot Autom 2002; 18(1): 1–10.
    [53]Stramigioli S, Secchi C, van der Schaft AJ, et al. A novel theory for sampled data system passivity. In: IEEE/RSJ international conference on intelligent robots and systems, Lausanne, Switzerland, 30 September–4 October 2002, pp. 1936–1941. New York: IEEE.
    [54]Ryu JH, Kwon DS and Hannaford B. Stability guaranteed control: time domain passivity approach. IEEE Trans Control Syst Technol 2004; 12(6): 860–868.
    [55]Ryu JH, Kwon DS and Hannaford B. Stable teleoperation with time domain passivity control. In: Proceedings 2002 IEEE international conference on robotics and automation, Washington, DC, 11–15 May 2002, pp. 3260– 3265. New York: IEEE.
    [56]Ryu JH, Hannaford B, Preusche C and Hirzinger G. Time domain passivity control with reference energy behavior. In: Proceedings 2002 IEEE international conference on robotics and automation, Las Vegas, NV 2003, pp. 2932-2937.
    [57]Adams RJ and Hannaford B. Stable haptic interaction with virtual environments. IEEE Trans Robot Autom 1999; 15(3): 465–474.
    [58]Colgate JE and Schenkel G. Passivity of a class of sampled data systems: application to haptic interfaces. In: Proceedings of 1994 American control conference - ACC ’94, Baltimore, MD, 29 June–1 July 1994, pp.3236– 3240. New York: IEEE.
    [59]Colgate JE and Brown JM. Factors affecting the Z-width of a haptic display. In: Proceedings of the 1994 IEEE international conference on robotics and automation, San Diego, CA, 8–13 May 1994, pp. 3205–3210. New York: IEEE.
    [60]Colgate JE, Stanley MC and Brown JM. Issues in the haptic display of tool use. In: Proceedings of 1995 IEEE/RSJ Int. conference on Intelligent Robotics and Systems, Pittsburgh, PA , 05-09 August 1995 pp. 140-145. New York: IEEE.
    [61]Gil JJ, Avello A, Rubio A and Florez J. Stability analysis of a 1 DOF haptic interface using the routh-hurwitz criterion. IEEE Trans. on Control System Technology 2004, 12(4): 583-588.
    [62]Marquez HJ. Nonlinear Control Systems: Analysis and Design. Wiley-Interscience, 2003.
    [63]Lee CC. Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on Systems, Man, and Cybernetics1990, 20(2): 404-418.
    [64]Lee CC. Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Transactions on Systems, Man, and Cybernetics 1990, 20(2): 419-435.
    [65]Mamdani EG. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. on Computers 1977, l. C-26(12): 1182-1191.

    無法下載圖示 全文公開日期 2028/05/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2033/05/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE