簡易檢索 / 詳目顯示

研究生: 謝緯諳
WEI-AN XIE
論文名稱: 異原子參雜石墨氮化碳複合硫化銅之對電極開發與量子點敏化太陽能電池應用
Synthesis of heteroatom-doped graphene nitride carbon Composite copper sulfide for quantum dot-sensitized solar cells
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 林正嵐
CHENG-LAN LIN
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 量子點敏化太陽能電池對電極CuS/S0.3C3N4 複合材料陰離子置換法
外文關鍵詞: QDSSCs, Counter electrode, CuS/S0.3C3N4 composite, Anion exchange
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功透過兩步法合成出CuS@C3N4與CuS@S0.3C3N4複合材料,此種複合材料包含高催化活性P型半導體硫化銅(Copper sulfide, CuS)和N型半導體石墨氮化碳材料(Graphic Carbon Nitride, g-C3N4)所形成P-N異質結構的CuS@C3N4。此種P-N異質結構會因為內部電場驅動力的提升,從而降低對電極/電解質界面的阻抗,促進電子從對電極傳輸到電解質,這將有助於量子點敏化太陽能電池(Quantum Dot Sensitized Solar Cells, QDSSCs)的效率提升。同時本研究也以異原子參雜方式在g-C3N4中調整其能帶結構,其中發現硫參雜g-C3N4 (S0.3C3N4) 可以具有較高的費米能階,電子便有利於從S0.3C3N4導帶轉移到CuS導帶,並且可由IPCE ( Incident Photon-to-current Conversion Efficiency )與OCVD (Open Circuit Voltage Decay )實驗中,說明CuS@S0.3C3N4異質結構能使電子快速填補電解液電洞,抑制光陽極電子被捕獲機率,加速電子注入效率,最終研發出CuS@S0.3C3N4複合材料對電極,其短路電流密度(JSC)由單純CuS條件對電極的26.8 mA·cm-2提升至29.3 mA·cm-2,光電轉換效率高達9.92%。
    為了進一步說明CuS@ S0.3C3N4的複合材料,進行了相關材料的分析鑑定,透過HRTEM、SEM、XRD、XPS、EPR來進行奈米材料結構分析。此外為了驗證透過摻雜硫調節石墨氮化碳能帶結構,利用UV/可見光光譜與Mott-Schottky 來探討材料能帶結構;最後針對不同條件對電極進行CV、、Tafel、OCVD來說明整體材料電催化性。


    In this study, We successfully synthesized CuS@C3N4 and CuS@S0.3C3N4 composite materials through a two-step method. This composite material contains high catalytic activity P-type semiconductor copper sulfide (CuS) and N-type Graphic Carbon Nitride (g-C3N4). This kind of P-N heterostructure will reduce the resistance to the electrode/electrolyte interface due to the increase of the driving force of the internal electric field, which will help improve the efficiency of quantum dot sensitized solar cells (QDSSCs). At the same time, this study also adjusted the energy band structure in g-C3N4 by means of heteroatom doping. It was found that sulfur-doped g-C3N4 (S0.3C3N4) can have a higher Fermi energy level, and the electrons are beneficial to transfer from S0.3C3N4 conduction band is to CuS conduction band, and It can be detected by IPCE (Incident Photon-to-current Conversion Efficiency) and OCVD (Open Circuit Voltage Decay) experiments, indicating that the CuS@ S0.3C3N4 heterostructure can make electrons quickly fill the electrolyte holes, inhibit the capture probability of photoanode electrons, and accelerate the electron injection efficiency. Finally, the counter electrode of CuS@ S0.3C3N4 composite material was developed, and its short-circuit current density (JSC) was increased from 26.8 mA cm-2 of the original condition CuS counter electrode to 29.3 mA cm-2, the photoelectric conversion efficiency is as high as 9.92%.

    摘要 i Abstract ii 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池發展 1 1.2.1鈣鈦礦太陽能電池 ( Perovskite Solar Cells ) 2 1.2.2染料敏化太陽能電池 ( Dye Sensitized Solar Cell, DSSC ) 3 1.3 研究動機 4 第二章 文獻回顧 5 2.1 量子點 5 2.1.1 量子侷限效應 Quantum Confinement Effect 5 2.1.2 多重激子效應 Multiple exciton generation 7 2.2 量子點敏化太陽能電池 ( QDSSC ) 8 2.2.1 量子點敏化太陽能電池之工作原理 9 2.2.1 元件構造的介紹 10 2.2.2.1 導電基材 10 2.2.2.2 工作電極半導體 11 2.2.2.3 光敏化劑 11 2.2.2.4 鈍化層 13 2.2.2.5 電解液 14 2.2.3 對電極材料 15 2.2.3.1 金屬硫化物 16 2.2.3.2 碳材對電極 18 2.2.3.3 複合材料對電極 20 2.2.3.4 石墨氮化碳(Graphic Carbon Nitride, g-C3N4) 21 2.2.3.5 陰離子交換法(Anion Exchange) 24 第三章 實驗步驟 27 3.1 實驗藥品 27 3.2 實驗器材 28 3.3 實驗步驟 30 3.3.1導電玻璃(FTO)之表面清潔 30 3.3.2光陽極製備-TiO2半導體薄膜 30 3.3.3光陽極製備-量子點Cu-In-S合成 31 3.3.4光陽極製備-敏化劑配製 32 3.3.5光陽極製備-CdZnS鈍化層 32 3.3.6多硫化物電解液製備 32 3.3.7對電極製備 - S0.3C3N4合成 33 3.3.8對電極製備 – CuO @ S0.3C3N4粉末合成 33 3.3.9對電極製備 – CuS @ S0.3C3N4合成 34 3.4 儀器操作原理 35 3.4.1 X 光繞射分析儀 ( XRD ) 35 3.4.2 掃描式電子顯微鏡 (SEM) 36 3.4.3 穿透式電子顯微鏡(TEM) 37 3.4.4 紫外光/可見光吸收光譜分析(UV-vis) 38 3.4.5電子順磁共振(electron paramagnetic resonance) 39 3.4.6比表面積 (BET Surface Area) 分析 40 3.4.7光電轉換效率(I-V Curve) 41 3.4.8電化學阻抗分析 (Electrochemical Impedance Spectroscopy) 43 3.4.9 Mott-Schottky equation 45 第四章 結果與討論 47 4.1背電極材料之分析 48 4.1.1石墨氮化碳( g-C3N4 )光學性質分析 48 i.吸收/螢光光譜 48 ii. 電子生命週期(Life time)量測 50 4.1.2硫化銅(CuS)光學性質分析 51 i.吸收光譜 51 4.1.3 XRD 分析 53 4.1.4 XPS 分析 55 4.1.5 EPR 分析 57 4.1.6 比表面積 (BET Surface Area) 分析 58 4.1.7 Mott-Schottky equation 60 4.1.8 掃描式電子顯微鏡(SEM) 分析 62 4.1.9 高解像能電子顯微鏡(HRTEM) 分析 63 4.2 Part 1 :金屬硫化物應用於QDSSCs對電極 64 4.2.1光電轉換效率(I-V Curve)之分析 65 4.3 Part2 : 不同石墨氮化碳與硫化銅複合材料作為背電極 66 4.3.1光電轉換效率(I-V Curve)之分析 66 4.4背電極材料之電化學分析 69 4.4.1 電化學阻抗分析 (Electrochemical Impedance Spectroscopy, EIS) 69 4.4.2 Tafel量測分析 71 4.4.3 開路電壓衰減分析(Open Circuit Voltage Decay, OCVD) 74 4.4.4 循環伏安法(Cyclic voltammetry, CV) 75 4.4.5入射光子-光電轉換效率( Incident Photon-to-current Conversion Efficiency, IPCE)之分析 77 4.4.6 電池長效性之測試 79 第五章 結論與未來展望 81

    Matthews, H. Damon, et al. "The proportionality of global warming to cumulative carbon emissions." Nature 459.7248 (2009): 829-832.
    Zhang, Zhihao, et al. "Rationalization of passivation strategies toward high-performance perovskite solar cells." Chemical Society Reviews (2023).
    Kim, Jin Young, et al. "High-efficiency perovskite solar cells." Chemical Reviews 120.15 (2020): 7867-7918.
    B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films," Nature, vol. 353, no. 6346, pp. 737-740, 1991
    B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films," in Nature vol. 353, ed, 1991, pp
    M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell," The Journal of Physical Chemistry B, vol. 107, no. 34, pp. 8981-8987, 2003
    M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell," The Journal of Physical Chemistry B, vol. 107, no. 34, pp. 8981-8987, 2003
    Wang, Ying, and N__ Herron. "Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties." The Journal of Physical Chemistry 95.2 (1991): 525-532.
    M. Green, Solution routes to semiconductor quantum dots: Nanotechnology: Quatum dots, Current Opinion in Solid State & Materials Science 2002 6(4),355-363
    Cao, Zhiyuan, et al. "Quantum dots with highly efficient, stable, and multicolor electrochemiluminescence." ACS Central Science 6.7 (2020): 1129-1137.
    W.-J. Lee, H. Okada, A. Wakahara, and A. Yoshida, "Structural and
    photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin Y," Ceramics International, vol. 32, no. 5, pp. 495-498, 2006.
    Zhou, Yanchun, Richard J. Phillips, and Jay A. Switzer. "Electrochemical synthesis and sintering of nanocrystalline cerium (IV) oxide powders." Journal of the American Ceramic Society 78.4 (1995): 981-985.
    Bohannan, Eric W., Mark G. Shumsky, and Jay A. Switzer. "Epitaxial electrodeposition of copper (I) oxide on single-crystal gold (100)." Chemistry of materials 11.9 (1999): 2289-2291.
    Gal‐Or, L., I. Silberman, and R. Chaim. "Electrolytic ZrO2 coatings: I. Electrochemical aspects." Journal of the Electrochemical Society 138.7 (1991): 1939.
    Li, W.; Zhong, X., Capping ligand-induced self-assembly for quantum dot sensitized solar cells. The Journal of Physical Chemistry Letters 2015, 6 (5), 796-806.
    Tung, Ha Thanh, Nguyen Thu Thao, and Lam Quang Vinh. "The reduced recombination and the enhanced lifetime of excited electron in QDSSCs based on different ZnS and SiO2 passivation." International Journal of Photoenergy 2018 (2018).
    Abate, M. A.; Chang, J.-Y., Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells 2018, 182, 37-44.
    Abate, M. A.; Chang, J.-Y., Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells 2018, 182, 37-44.
    Kim H, Hwang I, Yong K (2014) Highly durable and efficient quantum dot-sensitized solar cells based on oligomer gel electrolytes. ACS Appl Mater Interfaces 6(14):11245–11253
    Patel, Siddhant B., and Jignasa V. Gohel. "Quasi solid-state quantum dot–sensitized solar cells with polysulfide gel polymer electrolyte for superior stability." Journal of Solid State Electrochemistry 23.9 (2019): 2657-2666.
    Shengyuan, Yang, et al. "Electrospun TiO2 nanostructures sensitized by CdS in conjunction with CoS counter electrodes: Quantum dot-sensitized solar cells all prepared by successive ionic layer adsorption and reaction." Materials Letters 76 (2012): 43-46.
    Lin, Cheng-Yu, et al. "Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells." Journal of Materials Chemistry A 1.4 (2013): 1155-1162.
    Zhang, Jing Bo, et al. "Influence of highly efficient PbS counter electrode on photovoltaic performance of CdSe quantum dots-sensitized solar cells." Journal of Solid State Electrochemistry 17 (2013): 2909-2915.
    Tran Anh Tuan, Thi, et al. "Rgo/Cu2s Nanocomposite as a Highly Catalytic Counter Electrode for Boosting Quantum Dot–Sensitized Solar Cell Performance." Ha and Thi My Hanh, Nguyen and Hieu Le, Van and Thi Ngoc Trinh, Truong and Dang, Phuc, Rgo/Cu2s Nanocomposite as a Highly Catalytic Counter Electrode for Boosting Quantum Dot–Sensitized Solar Cell Performance.
    Jean, Joel, et al. "ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells." Advanced materials 25.20 (2013): 2790-2796.
    Lin, Cheng-Yu, et al. "Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells." Journal of Materials Chemistry A 1.4 (2013): 1155-1162.
    Dutta, A., and S. K. Dolui. "Preparation of colloidal dispersion of CuS nanoparticles stabilized by SDS." Materials Chemistry and Physics 112.2 (2008): 448-452.
    Jiang, Changlong, et al. "Hydrothermal fabrication of copper sulfide nanocones and nanobelts." Materials Letters 59.8-9 (2005): 1008-1011.
    Wang, Qun, et al. "Formation of CuS nanotube arrays from CuCl Nanorods through a gas-solid reaction route." Journal of crystal growth 299.2 (2007): 386-392.
    Li, Benxia, Yi Xie, and Yi Xue. "Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance." The Journal of Physical Chemistry C 111.33 (2007): 12181-12187.
    Zhao, Yixin, et al. "Plasmonic Cu2− x S nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides." Journal of the American Chemical Society 131.12 (2009): 4253-4261.
    Giménez, S.; Mora-Seró, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; Gómez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.; Bisquert, J., Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 2009, 20 (29), 295204.
    Zhang, Quanxin, et al. "Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs)." Electrochemistry Communications 12.2 (2010): 327-330.
    Hodes, Gary, Joost Manassen, and David Cahen. "Electrocatalytic electrodes for the polysulfide redox system." Journal of the Electrochemical Society 127.3 (1980): 544.
    Fan, Sheng-Qiang, et al. "Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells." Applied Physics Letters 96.6 (2010): 063501.
    Li, Wenhua, et al. "High-efficiency layered sulfur-doped reduced graphene oxide and carbon nanotube composite counter electrode for quantum dot sensitized solar cells." Journal of Power Sources 430 (2019): 95-103.
    Zhang, Tingting, et al. "Enhanced catalytic CuCo2Se4/g-C3N4 nano-composites as counter electrodes for high-performance quantum dot sensitized solar cells." Chemical Engineering Journal 454 (2023): 140518.
    Zhang, Tingting, et al. "Enhanced catalytic CuCo2Se4/g-C3N4 nano-composites as counter electrodes for high-performance quantum dot sensitized solar cells." Chemical Engineering Journal 454 (2023): 140518.
    Zhang, Tingting, et al. "Enhanced catalytic CuCo2Se4/g-C3N4 nano-composites as counter electrodes for high-performance quantum dot sensitized solar cells." Chemical Engineering Journal 454 (2023): 140518.
    Cao, Shaowen, et al. "Polymeric photocatalysts based on graphitic carbon nitride." Advanced Materials 27.13 (2015): 2150-2176.
    Wen, Jiuqing, et al. "A review on g-C3N4-based photocatalysts." Applied surface science 391 (2017): 72-123.
    Patnaik, Sulagna, Dipti Prava Sahoo, and Kulamani Parida. "Recent advances in anion doped g-C3N4 photocatalysts: a review." Carbon 172 (2021): 682-711.
    Wang, Ke, et al. "Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance." Applied Catalysis B: Environmental 176 (2015): 44-52.
    Cao, Shihai, et al. "Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation." Chemical Engineering Journal 353 (2018): 147-156.
    Ma, Xinguo, et al. "A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study." The Journal of Physical Chemistry C 116.44 (2012): 23485-23493.
    Li, Shuna, et al. "Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies." Applied Catalysis B: Environmental 190 (2016): 26-35.
    Hu, Zhengqiao, et al. "Synthesis of double-shelled copper chalcogenide hollow nanocages as efficient counter electrodes for quantum dot-sensitized solar cells." Materials today energy 5 (2017): 331-337.
    Park, Jungwon, et al. "Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles." Journal of the American Chemical Society 131.39 (2009): 13943-13945.
    Park, Jungwon, et al. "Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles." Journal of the American Chemical Society 131.39 (2009): 13943-13945.
    Xiong, S.; Zeng, H. C. Serial Ionic Exchange for the Synthesis of Multishelled Copper Sulfide Hollow Spheres. Angew. Chem., Int. Ed. 2012, 51, 949– 952, DOI: 10.1002/anie.201106826
    Zhang, Haitao, et al. "(NH 4) 2 S, a highly reactive molecular precursor for low temperature anion exchange reactions in nanoparticles." Dalton Transactions 42.35 (2013): 12596-12599.
    Hodges, James M., et al. "Cover Picture: Sequential Anion and Cation Exchange Reactions for Complete Material Transformations of Nanoparticles with Morphological Retention (Angew. Chem. Int. Ed. 30/2015)." Angewandte Chemie International Edition 54.30 (2015): 8567-8567.
    Deka, Nitumoni, et al. "Highly conducting flake-like CuS nanostructured counter electrode for photoelectrochemical solar energy conversion." Thin Solid Films 774 (2023): 139847.
    Deka, Nitumoni, et al. "Highly conducting flake-like CuS nanostructured counter electrode for photoelectrochemical solar energy conversion." Thin Solid Films 774 (2023): 139847.
    Li, Junhua, et al. "Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow." Sensors and Actuators B: Chemical 288 (2019): 552-563.
    Li, Fei, et al. "Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures." Powder Technology 198.2 (2010): 267-274.
    Li, Fei, et al. "Optical, photocatalytic properties of novel CuS nanoplate‐based architectures synthesised by a solvothermal route." Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 44.7 (2009): 729-735.
    王家輝, "軟性鈦金屬基板對染料敏化太陽能電池的影響," 碩士論文, 化學工程
    國立台灣科技大學高解析度場發射掃描式電子顯微鏡
    We gratefully thank Ms. ________ (C.-Y. Chien and/or S.-J. Ji) for the assistance in ________ (FE-TEM and/or EDS and/or FIB and/or SEM) experiments of the Instrumentation Center at NTU which is supported by the National Science and Technology Council, Taiwan.
    Fagerlund, Göran. "Determination of specific surface by the BET method." Matériaux et Construction 6 (1973): 239-245.
    “Adsorption of Gases in Multimolecular Layers”, Stephen Brunauer, P. H. Emmett and Edward Teller, J. Amer. Chem.
    Soc., 60, 309(1938).
    王家輝, "軟性鈦金屬基板對染料敏化太陽能電池的影響," 碩士論文, 化學工程與材料工程學系, 國立宜蘭大學, 宜蘭, 2014
    Hwang, Insung, and Kijung Yong. "Counter electrodes for quantum‐dot‐sensitized solar cells." ChemElectroChem 2.5 (2015): 634-653.
    Hwang, Insung, and Kijung Yong. "Counter electrodes for quantum‐dot‐sensitized solar cells." ChemElectroChem 2.5 (2015): 634-653.
    Bott, A. W., “Electrochemistry of semiconductors”, Current Separations, Vol 17, pp. 87-92, 1998
    Nguyen, Thi Kim Anh, et al. "The effect of graphitic carbon nitride precursors on the photocatalytic dye degradation of water-dispersible graphitic carbon nitride photocatalysts." Applied Surface Science 537 (2021): 148027.
    Jung, Haewon, Thanh-Truc Pham, and Eun Woo Shin. "Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts." Journal of Alloys and Compounds 788 (2019): 1084-1092.
    Zhu, Yun-Pei, Tie-Zhen Ren, and Zhong-Yong Yuan. "Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance." ACS applied materials & interfaces 7.30 (2015): 16850-16856.
    Zhang, Jinshui, et al. "Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis." Energy & Environmental Science 4.3 (2011): 675-678.
    Nematollahi, Reza, et al. "Experimental and theoretical studies on the synergistic effect of P and Se co-doped g-C3N4 loaded with Ag nanoparticles as an affective photocatalyst under visible light irradiation." Journal of Molecular Liquids 369 (2023): 120387.
    Abu-Sari, Suleiman M., et al. "Sulfur self-doped g-C3N4 nanofiber modified by NiO co-catalyst: An efficient, collectible, durable, and low-cost photocatalyst for visible-light-driven hydrogen evolution from water." Results in Engineering 17 (2023): 100952.
    Abu-Sari, Suleiman M., et al. "Sulfur self-doped g-C3N4 nanofiber modified by NiO co-catalyst: An efficient, collectible, durable, and low-cost photocatalyst for visible-light-driven hydrogen evolution from water." Results in Engineering 17 (2023): 100952.
    Cao, Shihai, et al. "Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation." Chemical Engineering Journal 353 (2018): 147-156.
    Yu, J.; Zhang, J.; Liu, S., Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. The Journal of Physical Chemistry C 2010, 114 (32), 13642-13649.
    Hu, Zhengqiao, et al. "Synthesis of double-shelled copper chalcogenide hollow nanocages as efficient counter electrodes for quantum dot-sensitized solar cells." Materials today energy 5 (2017): 331-337.
    Ge, Lei, et al. "Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts." Materials Research Bulletin 48.10 (2013): 3919-3925.
    Wang, Ke, et al. "Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance." Applied Catalysis B: Environmental 176 (2015): 44-52.
    Chen, Jingling, et al. "One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light." Materials Letters 145 (2015): 129-132.
    Vu, Manh-Hiep, et al. "Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation." ACS Sustainable Chemistry & Engineering 6.3 (2018): 4194-4203.
    Xu, Rongping, et al. "Construction of novel CdS@ CuS/g-C3N4 heterojunctions for efficient visible light-driven photo-Fenton degradation performance." Colloids and Surfaces A: Physicochemical and Engineering Aspects 659 (2023): 130598.
    Van de Krol, R., Goossens A. and Schoonman J., “Mott‐Schottky Analysis of Nanometer‐Scale Thin‐Film Anatase TiO2”, Journal of The Electrochemical Society, Vol 144, pp. 1723-1727, 1997.
    Zhang, Qingle, et al. "Facile fabrication of novel Ag2S/Kg-C3N4 composite and its enhanced performance in photocatalytic H2 evolution." Journal of colloid and interface science 568 (2020): 117-129.
    Wang, Siyuan, et al. "Enhanced photocatalytic performance by hybridization of Bi2WO6 nanoparticles with honeycomb-like porous carbon skeleton." Journal of environmental management 248 (2019): 109341.
    Wang, Yanping, et al. "Photocatalytic application of Ag-decorated CuS/BaTiO 3 composite photocatalysts for degrading RhB." Journal of Electronic Materials 50 (2021): 2674-2686.
    LI F, BI W T, KONG T, et al. Optical photocatalytic properties of novel CuS nanoplate-based architectures synthesised by a solvothermal route[J]. Crystal Research and Technology, 2009, 44(7): 729-735
    Gao, Yuxin, et al. "Fundamental understanding and effect of anionic chemistry in zinc batteries." Energy & Environmental Materials 5.1 (2022): 186-200.
    Liu, Qinqin, et al. "Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-Codoped and exfoliated ultrathin g-C3N4 nanosheets." Applied Catalysis B: Environmental 248 (2019): 84-94.
    Wudil, Y. S., et al. "Tuning of Graphitic Carbon Nitride (g-C3N4) for Photocatalysis: A Critical Review." Arabian Journal of Chemistry (2023): 104542.
    ABU-SARI, Suleiman M., et al. Visible-Light-Driven Photocatalytic Hydrogen Production on Defective, Sulfur Self-doped g-C3N4 Nanofiber Fabricate via Electrospinning Method. Journal of Environmental Chemical Engineering, 2023, 109318.
    Hwang, I.; Yong, K., Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ChemElectroChem 2015, 2 (5), 634-653.
    Bilal, S., Cyclic Voltammetry. In Encyclopedia of Applied Electrochemistry, Kreysa, G.; Ota, K.-i.; Savinell, R. F., Eds. Springer New York: New York, NY, 2014; pp 285-289.

    無法下載圖示 全文公開日期 2028/08/11 (校內網路)
    全文公開日期 2028/08/11 (校外網路)
    全文公開日期 2028/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE