簡易檢索 / 詳目顯示

研究生: 何偉全
Wei-Chuan Ho
論文名稱: 新穎的多硒硫化物電解液之探討及其應用 於量子點敏化太陽能電池
Development of an innovative polyselenosulfide electrolyte and its application in quantum dots-sensitized solar cells
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江佳穎
Chia-Ying Chiang
林正嵐
Cheng-Lan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 116
中文關鍵詞: 量子點敏化太陽能電池多硒硫化物電解液
外文關鍵詞: quantum dots-sensitized solar cells, polyselenosulfide electroyte, selenium
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本研究中,我們在多硫化物電解液中加入硒 (Se) 元素並研發出一種新穎的「多硒硫化物電解液」,藉以提高光電轉換效率 (PCE),並且利用電化學阻抗分析系統 (EIS) 及時間解析光激螢光 (TRPL) 實驗證實Se加入電解液中能降低光電極/電解液界面中電子與電洞再結合的機會;除此之外,藉由聚乙二醇 (PEG) 或是聚乙烯吡咯烷酮 (PVP) 的加入能夠再有效地降低光電極/電解液界面的電子電洞再結合,使得效率再獲得提升。
      在過去研究中,無論是光電極與電解液的界面中的電子電洞再結合或是背電極的催化性,都是量子點敏化太陽能電池 (QDSSCs) 中十分重要的議題。在光電極與電解液的界面中,雖然可藉由鈍化層的使用而大幅降低量子點 (QD) 導帶 (或TiO2導帶) 上的電子被電解液的氧化還原對所捕獲,然而,QD導帶上 (或TiO2導帶) 上的電子與QD價帶上的電洞再結合卻難以避免,但在本研究中,我們發現多硒硫化物電解液能夠同時解決光電極/電解液界面及背電極/電解液界面間的問題,故PCE及FF (填充因子) 由7.45%及46.1%分別上升至8.54%及60.0%,均有大幅度地提升;此外,再添加PEG與PVP能夠使得PCE分別再度上升至8.79%及8.61%,這也說明了此新穎的多硒硫化物電解液能夠藉由形成膠態電解液使效率再更上一層樓,凸顯其有潛力能夠形成擬固態電解液 (quasi-solid-state electrolyte) 並應用於QDSSCs的研究中。


    The formation of polyselenosulfide ions in traditional polysulfide electrolyte by addition of Se can enhance the power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs). QDSSCs that employee traditional polysulfide electrolytes suffer from problem of charge recombination at photoanode/electrolyte (PA/electrolyte) interface, which has been reported for years. In this study, to improve PCE, we developed a polyselenosulfide electrolyte based QDSSCs. And we found that charge recombination at PA/electrolyte interface can be effectively reduced in electrochemical impedance spectroscopy (EIS) and time-resolved photoluminescence (TRPL) analysis. To further enhance PCE as well as reduce the charge recombination at PA/electrolyte interface, we added polymer gelators like polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) to polyselenosulfide electrolyte.
    Charge recombination in PA/electrolyte interface and catalytic activity of counter electrode (CE) are two important issues which have been discussed in QDSSCs so far. Although the charge recombination from conduction band (CB) of QD (or CB of TiO2) to redox potential of electrolyte can be significantly reduced with passivation layers, however, it is hard to avoid that from CB of QD (or CB of TiO2) to valence band (VB) of QD. Herein, we report the use of polyseneosulfide electrolyte that can solve these two problems simultaneously. As a result, the PCE and fill factor (FF) in our devices has been improved from 7.45% and 46.1% up to 8.54% and 60.0%, respectively. Furthermore, PCE can be further increased to 8.79% and 8.61% by adding PEG and PVP by forming a gel electrolyte, respectively. This indicates that polyselenosulfide electrolyte is also a potential candidate to be quasi-solid-state electrolyte in QDSSCs in the future.

    致謝 摘要 Abstract 總目錄 圖目錄 表目錄 第一章 序論 1.1 前言 1.2 太陽能電池的發展概況 1.2.1 矽晶太陽能電池 1.2.2 薄膜太陽能電池 1.2.3 敏化太陽能電池 1.3 研究動機 第二章 文獻回顧 2.1 相關知識介紹 2.1.1 大氣質量與平均照度 2.1.2 半導體與奈米材料 2.2量子點性質 2.2.1 量子侷限效應 (Quantum confinement effect) 與尺寸效應 (Size effect) 2.2.2 多重激子化效應 (Mulitiple Exciton Generation, MEG) 2.3 量子點敏化太陽能電池 (Quantum-dots-seneitized solar cell, QDSSC) 2.3.1 工作原理 2.3.2 元件內部介紹 2.3.3 合成方法介紹 第三章 實驗藥品與方法 3.1 實驗藥品 3.2 實驗器材 3.3 實驗步驟 3.3.1 FTO導電玻璃基板清洗 3.3.2 光電極─二氧化鈦薄膜製備 3.3.3 量子點的製備與光電極的敏化 3.3.4 CuS背電極之製備 3.3.5 電解液的製備 3.3.6 電池元件組裝 第四章 結果與討論 4.1 CIS-In2S3光電極薄膜之鑑定 4.2 加熱電解液之影響 4.3 PART I─Se的優化 4.3.1 光電轉換效率 (Power Conversion Efficiency, PCE) 的測定 4.3.2 多硒硫化物對光電極的影響 4.3.3 多硒硫化物與背電極的作用 4.4 PART II─PEG (或PVP)對多硫化物電解液之影響 4.4.1 多硫化物電解液 (E1) 中添加PEG 4.4.2 多硫化物電解液 (E1) 中添加PVP 4.4 PART III─PEG (或PVP) 與Se的加成 (synergestic) 效應 4.4.1 多硒硫化物電解液 (E3) 中添加PEG 4.4.2 多硒硫化物電解液 (E3) 中添加PVP 第五章 結論與未來展望 第六章 參考文獻

    [1] Key World Energy Statistics, http://www.iea.org/publications/freepublications/publication/KeyWorld2013.pdf accessed December 2013.
    [2] Docampo, P., Guldin, S., Leijtens, T., Noel, N. K., Steiner, U., & Snaith, H. J. (2014). Lessons learned: from dye‐sensitized solar cells to all‐solid‐state hybrid devices. Advanced Materials, 26(24), 4013.
    [3] Perez, R., Zweibel, K., & Hoff, T. E. (2011). Solar power generation in the US: Too expensive, or a bargain?. Energy Policy, 39(11), 7290.
    [4] Centurioni, E., & Iencinella, D. (2003). Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance. IEEE Electron Device Letters, 24(3), 177.
    [5] Abou-Ras, D., Rudmann, D., Kostorz, G., Spiering, S., Powalla, M., & Tiwari, A. N. (2005). Microstructural and chemical studies of interfaces between Cu(In, Ga)Se2 and In2S3 layers. Journal of Applied Physics, 97(8), 084908.
    [6] Tsubomura, H., Matsumura, M., Nomura, Y., & Amamiya, T. (1976). Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 261(5559), 402.
    [7] Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics, 32(3), 510.
    [8] O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737.
    [9] Hanna, M. C., & Nozik, A. J. (2006). Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics, 100(7), 074510.
    [10] Sharma, D., Jha, R., & Kumar, S. (2016). Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Solar Energy Materials and Solar Cells, 155, 294.
    [11] Semonin, O. E., Luther, J. M., & Beard, M. C. (2012). Quantum dots for next-generation photovoltaics. Materials Today, 15(11), 508.
    [12] Song, H., Rao, H., & Zhong, X. (2018). Recent advances in electrolytes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 6(12), 4895.
    [13] Tanabe, K., Guimard, D., Bordel, D., Morihara, R., Nishioka, M., & Arakawa, Y. (2012, June). High-efficiency InAs/GaAs quantum dot solar cells by MOCVD. In Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE (pp. 001929-001930). IEEE.
    [14] Tanabe, K., Guimard, D., Bordel, D., & Arakawa, Y. (2012). High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Applied Physics Letters, 100(19), 193905.
    [15] Jiao, S., Du, J., Du, Z., Long, D., Jiang, W., Pan, Z., Li, Y. & Zhong, X. (2017). Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%. The journal of Physical Chemistry Letters, 8(3), 559.
    [16] Wang, W., Feng, W., Du, J., Xue, W., Zhang, L., Zhao, L., Li, Y. & Zhong, X. (2018). Cosensitized quantum dot solar cells with conversion efficiency over 12%. Advanced Materials, 30(11), 1705746.
    [17] Yu, J., Wang, W., Pan, Z., Du, J., Ren, Z., Xue, W., & Zhong, X. (2017). Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. Journal of Materials Chemistry A, 5(27), 14124.
    [18] Yang, Z., Chen, C. Y., Liu, C. W., & Chang, H. T. (2010). Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chemical Communications, 46(30), 5485.
    [19] Meng, K., Surolia, P. K., Byrne, O., & Thampi, K. R. (2014). Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode. Journal of Power Sources, 248, 218.
    [20] Pan, Z., Zhao, K., Wang, J., Zhang, H., Feng, Y., & Zhong, X. (2013). Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano, 7(6), 5215-5222.
    [21] Lee, H. J., Chen, P., Moon, S. J., Sauvage, F., Sivula, K., Bessho, T., Gamelin, D. R., Comte, P., Zakeeruddin, S. M., Seok, S. II, Grätzel, M. & Nazeeruddin, M. K. (2009). Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir, 25(13), 7602.
    [22] Lee, H., Leventis, H. C., Moon, S. J., Chen, P., Ito, S., Haque, S. A., Torres, T., Nüesch, F., Geiger, T., Zakeeruddin, S. M., Grätzel, M. & Nazeeruddin, M. K. (2009). PbS and CdS quantum dot‐sensitized solid‐state solar cells:“Old concepts, new results”. Advanced Functional Materials, 19(17), 2735.
    [23] Chang, J. Y., Li, C. H., Chiang, Y. H., Chen, C. H., & Li, P. N. (2016). Toward the facile and ecofriendly fabrication of quantum dot-sensitized solar cells via thiol coadsorbent assistance. ACS Applied Materials & Interfaces, 8(29), 18878.
    [24] Niezgoda, J. S., Yap, E., Keene, J. D., McBride, J. R., & Rosenthal, S. J. (2014). Plasmonic CuxInyS2 Quantum Dots Make Better Photovoltaics Than Their Nonplasmonic Counterparts. Nano Letters, 14(6), 3262.
    [25] Dai, P., Zhang, Y., Xue, Y., Jiang, X., Wang, X., & Bando, Y. (2015). Nanoparticle-based screen printing of copper zinc tin sulfide thin film as photocathode for quantum dot sensitized solar cell. Materials Letters, 158, 198.
    [26] Li, P. N., Ghule, A. V., & Chang, J. Y. (2017). Direct aqueous synthesis of quantum dots for high-performance AgInSe2 quantum-dot-sensitized solar cell. Journal of Power Sources, 354, 100.
    [27] Abate, M. A., & Chang, J. Y. (2018). Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells, 182, 37.
    [28] Kobosko, S. M., & Kamat, P. V. (2018). Indium-Rich AgInS2-ZnS Quantum Dots–Ag: Zn Dependent Photophysics and Photovoltaics. The Journal of Physical Chemistry C. Journal of Physical Chemistry C, 122(26), 14336.
    [29] Chiang, Y. H., Lin, K. Y., Chen, Y. H., Waki, K., Abate, M. A., Jiang, J. C., & Chang, J. Y. (2018). Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 6(20), 9629.
    [30] Chakrapani, V., Baker, D., & Kamat, P. V. (2011). Understanding the Role of the Sulfide Redox Couple (S2–/Sn2–) in Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 133(24), 9607.
    [31] Standard, A. S. T. M. (1998). G159, Standard Tables for References Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Tilted Surface. Society for Testing Matls., West Conshocken, PA, USA.
    [32] International Electrotechnical Commission. (1987). IEC 891. Procedures for temperature and irradiance corrections to measured IV characteristics of crystalline silicon photovoltaic devices.
    [33] International Electrotechnical Commission. (2006). Photovoltaic devices-Part 1: Measurement of photovoltaic current-voltage characteristics. IEC 60904-1.
    [34] Lövestam, G., Rauscher, H., Roebben, G., Klüttgen, B. S., Gibson, N., Putaud, J. P., & Stamm, H. (2010). Considerations on a definition of nanomaterial for regulatory purposes. Joint Research Centre (JRC) Reference Reports, 80004-1.
    [35] Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J., & Johnson, J. C. (2010). Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical Reviews, 110(11), 6873.
    [36] Wang, Y., & Herron, N. (1991). Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry, 95(2), 525.
    [37] Green, M. (2002). Solution routes to III-V semiconductor quantum dots. Current Opinion in Solid State & Materials Science, 4(6), 355.
    [38] Bera, D., Qian, L., Tseng, T. K., & Holloway, P. H. (2010). Quantum dots and their multimodal applications: a review. Materials, 3(4), 2260.
    [39] Koole, R., Groeneveld, E., Vanmaekelbergh, D., Meijerink, A., & de Mello Donegá, C. (2014). Size effects on semiconductor nanoparticles. In Nanoparticles (pp. 13-51). Springer, Berlin, Heidelberg.
    [40] Guyot-Sionnest, P., Shim, M., Matranga, C., & Hines, M. (1999). Intraband relaxation in CdSe quantum dots. Physical Review B, 60(4), R2181.
    [41] Kouhnavard, M., Ikeda, S., Ludin, N. A., Khairudin, N. A., Ghaffari, B. V., Mat-Teridi, M. A., ... & Sopian, K. (2014). A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 37, 397.
    [42] Nozik, A. J. (2002). Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures, 14(1-2), 115.
    [43] Minami, T. (2000). New n-type transparent conducting oxides. MRS Bulletin, 25(8), 38.
    [44] Minami, T. (2005). Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology, 20(4), S35.
    [45] Fraser, D. B., & Cook, H. D. (1977). Film deposition with the Sputter Gun. Journal of Vacuum Science and Technology, 14(1), 147.
    [46] Davis, L. (1993). Properties of transparent conducting oxides deposited at room temperature. Thin Solid Films, 236(1-2), 1-5.
    [47] Lehmann, H. W., & Widmer, R. (1975). Preparation and properties of reactively co-sputtered transparent conducting films. Thin Solid Films, 27(2), 359.
    [48] Shanthi, E., Banerjee, A., Dutta, V., & Chopra, K. L. (1982). Electrical and optical properties of tin oxide films doped with F and (Sb+ F). Journal of Applied Physics, 53(3), 1615.
    [49] Desilvestro, J., Graetzel, M., Kavan, L., Moser, J., & Augustynski, J. (1985). Highly efficient sensitization of titanium dioxide. Journal of the American Chemical Society, 107(10), 2988.
    [50] Ferrere, S., Zaban, A., & Gregg, B. A. (1997). Dye sensitization of nanocrystalline tin oxide by perylene derivatives. The Journal of Physical Chemistry B, 101(23), 4490.
    [51] Keis, K., Vayssieres, L., Lindquist, S. E., & Hagfeldt, A. (1999). Nanostructured ZnO electrodes for photovoltaic applications. Nanostructured Materials, 12(1-4), 487.
    [52] El Zayat, M. Y., Saed, A. O., & El-Dessouki, M. S. (1998). Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes. International Journal of Hydrogen Energy, 23(4), 259.
    [53] Bang, J. H., & Kamat, P. V. (2009). Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano, 3(6), 1467.
    [54] Li, L., Yang, X., Zhao, J., Gao, J., Hagfeldt, A., & Sun, L. (2011). Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte. Journal of Materials Chemistry, 21(15), 5573.
    [55] Li, L., Yang, X., Gao, J., Tian, H., Zhao, J., Hagfeldt, A., & Sun, L. (2011). Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte. Journal of the American Chemical Society, 133(22), 8458.
    [56] Sobuś, J., Burdziński, G., Karolczak, J., Idígoras, J., Anta, J. A., & Ziółek, M. (2014). Comparison of TiO2 and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes. Langmuir, 30(9), 2505.
    [57] Tiwana, P., Docampo, P., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2011). Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano, 5(6), 5158.
    [58] Quintana, M., Edvinsson, T., Hagfeldt, A., & Boschloo, G. (2007). Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. The Journal of Physical Chemistry C, 111(2), 1035.
    [59] Chandiran, A. K., Abdi-Jalebi, M., Nazeeruddin, M. K., & Grätzel, M. (2014). Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano, 8(3), 2261.
    [60] Barber, J. (2009). Photosynthetic energy conversion: natural and artificial. Chemical Society Reviews, 38(1), 185.
    [61] Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M. E., Cab, C., de Coss, R. D., & Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19(14), 145605.
    [62] Zhang, Z., Ito, S., O'Regan, B., Kuang, D., Zakeeruddin, S. M., Liska, P., Charvet, R., Comte, P., Nazeeruddin, M. K., Pechy, P., Humphry-Baker, R., Koyanagi, T., Mizuno, T. & Grätzel, M. (2007). The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells. Zeitschrift für Physikalische Chemie, 221(3), 319-327.
    [63] Du, Z., Zhang, H., Bao, H., & Zhong, X. (2014). Optimization of TiO2 photoanode films for highly efficient quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2(32), 13033.
    [64] Kruse, O., Rupprecht, J., Mussgnug, J. H., Dismukes, G. C., & Hankamer, B. (2005). Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Sciences, 4(12), 957.
    [65] Hagfeldt, A., & Grätzel, M. (2000). Molecular photovoltaics. Accounts of Chemical Research, 33(5), 269.
    [66] Li, S., Chen, Z., Li, T., Gao, H., Wei, C., Li, W., Kong, W. & Zhang, W. (2014). Vertical nanosheet-structured ZnO/TiO2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells. Electrochimica Acta, 127, 362.
    [67] Song, X., Wang, M., Xing, T., Deng, J., Ding, J., Yang, Z., & Zhang, X. (2014). Fabrication of micro/nano-composite porous TiO2 electrodes for quantum dot-sensitized solar cells. Journal of Power Sources, 253, 17.
    [68] Badawi, A., Al-Hosiny, N., Abdallah, S., Negm, S., & Talaat, H. (2013). Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Solar Energy, 88, 137.
    [69] Tao, L., Xiong, Y., Liu, H., & Shen, W. (2014). High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale, 6(2), 931.
    [70] Tubtimtae, A., Wu, K. L., Tung, H. Y., Lee, M. W., & Wang, G. J. (2010). Ag2S quantum dot-sensitized solar cells. Electrochemistry Communications, 12(9), 1158.
    [71] Pan, Z., Zhao, K., Wang, J., Zhang, H., Feng, Y., & Zhong, X. (2013). Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano, 7(6), 5215.
    [72] McDaniel, H., Fuke, N., Pietryga, J. M., & Klimov, V. I. (2013). Engineered CuInSe x S2–x Quantum Dots for Sensitized Solar Cells. The Journal of Physical Chemistry Letters, 4(3), 355.
    [73] Yang, Z., Chen, C. Y., Liu, C. W., & Chang, H. T. (2010). Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chemical Communications, 46(30), 5485.
    [74] Hossain, M. A., Jennings, J. R., Koh, Z. Y., & Wang, Q. (2011). Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano, 5(4), 3172.
    [75] Lee, H. J., Bang, J., Park, J., Kim, S., & Park, S. M. (2010). Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes. Chemistry of Materials, 22(19), 5636.
    [76] Zhang, W., Zhang, H., Feng, Y., & Zhong, X. (2012). Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared. ACS Nano, 6(12), 11066.
    [77] Jeong, D. W., Kim, J. Y., Seo, H. W., Lim, K. M., Ko, M. J., Seong, T. Y., & Kim, B. S. (2018). Characteristics of gradient-interface-structured ZnCdSSe quantum dots with modified interface and its application to quantum-dot-sensitized solar cells. Applied Surface Science, 429, 16.
    [78] Kobosko, S. M., & Kamat, P. V. (2018). Indium-Rich AgInS2-ZnS Quantum Dots–Ag: Zn Dependent Photophysics and Photovoltaics. The Journal of Physical Chemistry C., 122(26), 14336.
    [79] Yue, L., Rao, H., Du, J., Pan, Z., Yu, J., & Zhong, X. (2018). Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances, 8(7), 3637.
    [80] Yang, P., Ando, M., & Murase, N. (2007). Encapsulation of emitting CdTe QDs within silica beads to retain initial photoluminescence efficiency. Journal of Colloid and Interface Science, 316(2), 420.
    [81] Ma, Y., Li, Y., & Zhong, X. (2014). Silica coating of luminescent quantum dots prepared in aqueous media for cellular labeling. Materials Research Bulletin, 60, 543.
    [82] Li, L., Daou, T. J., Texier, I., Kim Chi, T. T., Liem, N. Q., & Reiss, P. (2009). Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chemistry of Materials, 21(12), 2422.
    [83] Ruan, C., Zhang, Y., Lu, M., Ji, C., Sun, C., Chen, X., Chen, H., Colvin, V. L. & Yu, W. W. (2016). White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication. Nanomaterials, 6(1), 13.
    [84] Koneswaran, M., & Narayanaswamy, R. (2015). Ultrasensitive detection of vitamin B6 using functionalised CdS/ZnS core–shell quantum dots. Sensors and Actuators B: Chemical, 210, 811.
    [85] Huang, F., Hou, J., Zhang, Q., Wang, Y., Massé, R. C., Peng, S., Wang, H., Liu, J. & Cao, G. (2016). Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy, 26, 114.
    [86] Shen, Q., Kobayashi, J., Diguna, L. J., & Toyoda, T. (2008). Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. Journal of Applied Physics, 103(8), 084304.
    [87] Gimenez, S., Mora-Sero, I., Macor, L., Guijarro, N., Lana-Villarreal, T., Gomez, R., Diguna, L. J, Shen, Q., Toyoda, T. & Bisquert, J. (2009). Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 20(29), 295204.
    [88] Ren, Z., Wang, J., Pan, Z., Zhao, K., Zhang, H., Li, Y., Zhao, Y., Sero, I. M., Bisquert, J. & Zhong, X. (2015). Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%. Chemistry of Materials, 27(24), 8398.
    [89] Esparza, D., Lopez-Luke, T., Oliva, J., Cerdán-Pasarán, A., Martínez-Benítez, A., Mora-Seró, I., & De la Rosa, E. (2017). Enhancement of Efficiency in Quantum Dot Sensitized Solar Cells Based on CdS/CdSe/CdSeTe Heterostructure by Improving the Light Absorption in the VIS-NIR Region. Electrochimica Acta, 247, 899.
    [90] Mingsukang, M. A., Buraidah, M. H., & Careem, M. A. (2017). Development of gel polymer electrolytes for application in quantum dot-sensitized solar cells. Ionics, 23(2), 347.
    [91] Tung, H. T., Thao, N. T., & Vinh, L. Q. (2018). The Reduced Recombination and the Enhanced Lifetime of Excited Electron in QDSSCs Based on Different ZnS and SiO2 Passivation. International Journal of Photoenergy, 2018, 8545207.
    [92] Radich, J. G., Dwyer, R., & Kamat, P. V. (2011). Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2–/Sn2–at the counter electrode. The Journal of Physical Chemistry Letters, 2(19), 2453.
    [93] Tachan, Z., Shalom, M., Hod, I., Ruhle, S., Tirosh, S., & Zaban, A. (2011). PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. The Journal of Physical Chemistry C, 115(13), 6162.
    [94] Gopi, C. V., Venkata-Haritha, M., Kim, S. K., Rao, S. S., Punnoose, D., & Kim, H. J. (2015). Highly efficient and stable quantum dot-sensitized solar cells based on a Mn-doped CuS counter electrode. RSC Advances, 5(4), 2963.
    [95] Li, L., Zhu, P., Peng, S., Srinivasan, M., Yan, Q., Nair, A. S., Liu, B. & Samakrishna, S. (2014). Controlled growth of CuS on electrospun carbon nanofibers as an efficient counter electrode for quantum dot-sensitized solar cells. The Journal of Physical Chemistry C, 118(30), 16526.
    [96] Deng, M., Huang, S., Zhang, Q., Li, D., Luo, Y., Shen, Q., Taro, T. & Meng, Q. (2010). Screen-printed Cu2S-based counter electrode for quantum-dot-sensitized solar cell. Chemistry Letters, 39(11), 1168.
    [97] Salaramoli, H., Maleki, E., Shariatinia, Z., & Ranjbar, M. (2013). CdS/CdSe quantum dots co-sensitized solar cells with Cu2S counter electrode prepared by SILAR, spray pyrolysis and Zn–Cu alloy methods. Journal of Photochemistry and Photobiology A: Chemistry, 271, 56.
    [98] Jiao, S., Du, J., Du, Z., Long, D., Jiang, W., Pan, Z., Li, Y. & Zhong, X. (2017). Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%. The Journal of Physical Chemistry Letters, 8(3), 559.
    [99] Yuan, B., Gao, Q., Zhang, X., Duan, L., Chen, L., Mao, Z., Li, X. & Lü, W. (2018). Reduced graphene oxide (RGO)/Cu2S composite as catalytic counter electrode for quantum dot-sensitized solar cells. Electrochimica Acta, 277, 50.
    [100] Zhang, H., Yang, C., Du, Z., Pan, D., & Zhong, X. (2017). Graphene hydrogel-based counter electrode for high efficiency quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 5(4), 1614.
    [101] Tang, Q., Cai, H., Yuan, S., & Wang, X. (2013). Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. Journal of Materials Chemistry A, 1(2), 317.
    [102] He, B., Tang, Q., Liang, T., & Li, Q. (2014). Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. Journal of Materials Chemistry A, 2(9), 3119.
    [103] Lee, Y. L., & Chang, C. H. (2008). Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. Journal of Power Sources, 185(1), 584.
    [104] Chae, S. Y., Hwang, Y. J., & Joo, O. S. (2014). Role of HA additive in quantum dot solar cell with Co [(bpy) 3] 2+/3+-based electrolyte. RSC Advances, 4(51), 26907.
    [105] Tachibana, Y., Akiyama, H. Y., Ohtsuka, Y., Torimoto, T., & Kuwabata, S. (2006). CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. Chemistry Letters, 36(1), 88.
    [106] Kim, H., Hwang, I., & Yong, K. (2014). Highly durable and efficient quantum dot-sensitized solar cells based on oligomer gel electrolytes. ACS Applied Materials & Interfaces, 6(14), 11245.
    [107] Song, H., Rao, H., & Zhong, X. (2018). Recent advances in electrolytes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 6(12), 4895.
    [108] Du, J., Meng, X., Zhao, K., Li, Y., & Zhong, X. (2015). Performance enhancement of quantum dot sensitized solar cells by adding electrolyte additives. Journal of Materials Chemistry A, 3(33), 17091.
    [109] Duan, J., Tang, Q., Sun, Y., He, B., & Chen, H. (2014). Solid-state electrolytes from polysulfide integrated polyvinylpyrrolidone for quantum dot-sensitized solar cells. RSC Advances, 4(105), 60478.
    [110] Niesen, T. P., & De Guire, M. R. (2002). deposition of ceramic thin films at low temperatures from aqueous solutions. Solid State Ionics, 151(1-4), 61.
    [111] Pathan, H. M., & Lokhande, C. D. (2004). Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bulletin of Materials Science, 27(2), 85.
    [112] Chang, C. H., & Lee, Y. L. (2007). Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Applied Physics Letters, 91(5), 053503.
    [113] Sharma, D., Jha, R., & Kumar, S. (2016). Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Solar Energy Materials and Solar Cells, 155, 294.
    [114] Liu, D., & Kamat, P. V. (1993). Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films. The Journal of Physical Chemistry, 97(41), 10769.
    [115] Kim, H. J., Suh, S. M., Rao, S. S., Punnoose, D., Tulasivarma, C. V., Gopi, C. V., Kundakarla, N., Ravi, S. & Durga, I. K. (2016). Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Journal of Electroanalytical Chemistry, 777, 123.
    [116] Keuleyan, S., Lhuillier, E., Brajuskovic, V., & Guyot-Sionnest, P. (2011). Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photonics, 5(8), 489.
    [117] Li, L., Pandey, A., Werder, D. J., Khanal, B. P., Pietryga, J. M., & Klimov, V. I. (2011). Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. Journal of the American Chemical Society, 133(5), 1176.
    [118] de Mello Donegá, C. (2011). Synthesis and properties of colloidal heteronanocrystals. Chemical Society Reviews, 40(3), 1512.
    [119] Zaban, A. M. O. I., Mićić, O. I., Gregg, B. A., & Nozik, A. J. (1998). Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 14(12), 3153.
    [120] Rogach, A. L., Kornowski, A., Gao, M., Eychmüller, A., & Weller, H. (1999). Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. The Journal of Physical Chemistry B, 103(16), 3065.
    [121] Manna, L., Milliron, D. J., Meisel, A., Scher, E. C., & Alivisatos, A. P. (2003). Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Materials, 2(6), 382.
    [122] Dorhout, P. K., Ford, N. B., & Raymond, C. C. (2017). Understanding the polychalcogenides as building blocks to solid state materials: Speciation of polychalcogenides in solutions. Coordination Chemistry Reviews., 352, 537
    [123] Millero, F. J. (1986). The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Marine Chemistry, 18(2-4), 121.
    [124] Kelsall, G. H. (2014). Electrochemical Removal of H2S. Encyclopedia of Applied Electrochemistry, 593.
    [125] Lessner, P., Winnick, J., McLarnon, F. R., & Cairns, E. J. (1986). Kinetics of Aqueous Polysulfide Solutions II. Electrochemical Measurement of the Rates of Coupled Electrochemical and Chemical Reactions by the Potential Step Method. Journal of The Electrochemical Society, 133(12), 2517.
    [126] Wu, C., Jia, L., Guo, S., Han, S., Chi, B., Pu, J., & Jian, L. (2013). Open-circuit voltage enhancement on the basis of polymer gel electrolyte for a highly stable dye-sensitized solar cell. ACS Applied Materials & Interfaces, 5(16), 7886.
    [127] Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848.
    [128] Kouhnavard, M., Ikeda, S., Ludin, N. A., Khairudin, N. A., Ghaffari, B. V., Mat-Teridi, M. A., Ibrahim, M. A., Sepeai, S. & Sopian, K. (2014). A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 37, 397.
    [129] Hwang, I., & Yong, K. (2015). Counter Electrodes for Quantum‐Dot‐Sensitized Solar Cells. ChemElectroChem, 2(5), 634.
    [130] Wu, C., Jia, L., Guo, S., Han, S., Chi, B., Pu, J., & Jian, L. (2013). Open-circuit voltage enhancement on the basis of polymer gel electrolyte for a highly stable dye-sensitized solar cell. ACS Applied Materials & Interfaces, 5(16), 7886.
    [131] Sharma, D., Jha, R., & Kumar, S. (2016). Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Solar Energy Materials and Solar Cells, 155, 294.
    [132] Ye, M., Gao, X., Hong, X., Liu, Q., He, C., Liu, X., & Lin, C. (2017). Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. Sustainable Energy & Fuels, 1(6), 1217.
    [133] Lasia, A. (2002). Electrochemical impedance spectroscopy and its applications. In Modern Aspects of Electrochemistry (pp. 143-248). Springer, Boston, MA.
    [134] Ning, Z., Yuan, C., Tian, H., Fu, Y., Li, L., Sun, L., & Ågren, H. (2012). Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. Journal of Materials Chemistry, 22(13), 6032.
    [135] González-Pedro, V., Xu, X., Mora-Sero, I., & Bisquert, J. (2010). Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano, 4(10), 5783.
    [136] Hodes, G., Manassen, J., & Cahen, D. (1980). Electrocatalytic electrodes for the polysulfide redox system. Journal of the Electrochemical Society, 127(3), 544.
    [137] Strbac, S. B., & Adzic, R. R. (2014). Electrocatalysis, Fundamentals-Electron Transfer Process; Current-Potential Relationship; Volcano Plots. In Encyclopedia of Applied Electrochemistry (pp. 417-423). Springer, New York, NY.
    [138] Wang, Q., Moser, J. E., & Grätzel, M. (2005). Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. The Journal of Physical Chemistry B, 109(31), 14945.
    [139] Gopi, C. V., Venkata-Haritha, M., Kim, S. K., Rao, S. S., Punnoose, D., & Kim, H. J. (2015). Highly efficient and stable quantum dot-sensitized solar cells based on a Mn-doped CuS counter electrode. RSC Advances, 5(4), 2963.
    [140] Zhang, H., Wang, C., Peng, W., Yang, C., & Zhong, X. (2016). Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode. Nano Energy, 23, 60.
    [141] Liu, F., Zhu, J., Hu, L., Zhang, B., Yao, J., Nazeeruddin, M. K., Grätzel, M. & Dai, S. (2015). Low-temperature, solution-deposited metal chalcogenide films as highly efficient counter electrodes for sensitized solar cells. Journal of Materials Chemistry A, 3(12), 6315.
    [142] Song, H., Rao, H., & Zhong, X. (2018). Recent advances in electrolytes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 6(12), 4895.
    [143] Du, J., Meng, X., Zhao, K., Li, Y., & Zhong, X. (2015). Performance enhancement of quantum dot sensitized solar cells by adding electrolyte additives. Journal of Materials Chemistry A, 3(33), 17091.
    [144] Chapi, S., Raghu, S., Subramanya, K., Archana, K., Mini, V., & Devendrappa, H. (2014, April). Conductivity and optical band gaps of polyethylene oxide doped with Li2SO4 salt. In AIP Conference Proceedings (Vol. 1591, No. 1, pp. 1275-1277). AIP.
    [145] Duan, J., Tang, Q., Sun, Y., He, B., & Chen, H. (2014). Solid-state electrolytes from polysulfide integrated polyvinylpyrrolidone for quantum dot-sensitized solar cells. RSC Advances, 4(105), 60478.
    [146] Jiang, G., Pan, Z., Ren, Z., Du, J., Yang, C., Wang, W., & Zhong, X. (2016). Poly (vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A, 4(29), 11416.
    [147] Rawat, A., Mahavar, H. K., Chauhan, S., Tanwar, A., & Singh, P. J. (2012). Optical band gap of polyvinylpyrrolidone/polyacrilamide blend thin films. A. Rawat, H.K. Mahavar, S. Chauhan, A. Tanwar, P.J. Singh., Indian Journal of Pure & Applied Physics., 50, 100

    無法下載圖示 全文公開日期 2023/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE