簡易檢索 / 詳目顯示

研究生: 江雅涵
YA-HAN CHIANG
論文名稱: 錳摻雜Cu-In-S量子點之合成及量子點敏化太陽能電池應用
Aqueous synthesis of Mn-doped Cu-In-S quantum dots and its application in quantum dots-sensitized solar cell
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 張家耀
Jia-Yaw Chang
周宗翰
Chou, Tzung-Han
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 量子點太陽能電池錳摻雜
外文關鍵詞: Quantum Dot, solar cell, Mn-doped
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究於水相中藉由微波輔助法,可瞬時升溫至反應溫度,在定溫均勻受熱環境下,將短鏈雙功能分子與離子前驅液置於反應瓶中快速合成,能以一步合成量子點,不需再經配位體置換之表面改質,製程簡易且快速。
    量子點部分選擇不含重金屬離子之銅、銦及硫離子前驅物,合成先以改變金屬銅銦離子比例,合成出CuInS2/In2S3量子點,再進一步以共成長摻雜法摻雜錳於量子點,並將量子點進行材料分析。
    量子點太陽能電池應用部分,將預合成量子點經純化配製成共吸附劑,使量子點沉積於TiO2光電極後,以連續離子吸附反應沉積ZnS鈍化層,搭配Cu2S背電極組裝成電池元件。其中,不同銅銦比例所合成出的CuInS2/In2S3量子點太陽能電池效率可達7.5 %。而錳摻雜於CuInS2/In2S3量子點後,其光電轉換效率更高達8.0 %。隨後將電池元件進行電化學分析,探討內部電子傳遞機制,以及介面阻抗對電子傳遞之影響。


    In this study, we demonstrated the synthesis of colloidal quantum dot (QDs) by microwave-assisted method in aqueous phase. The advantage of using microwave-assisted method is to heat the reaction temperature instantaneously and uniformly at constant temperature. The quantum dots were synthesized by the rapid reaction of ions precursor solution and short-chain bifunctional molecules. The synthesis process is simple and fast without further surface modification of ligand exchange.
    For the use of quantum dots, we selected free heavy metal ion precursors such as copper, indium and sulfur ion. The different ratio of copper and indium were first synthesized as CuInS2 and In2S3 quantum dots. By further utilize the common growth doping method, the Mn metals are doped into the previous QDs.
    The application of quantum dot-sensitized solar cells (QDSSCs), pre-synthesis QDs mixed with co-adsorbent after purification. When QDs deposited on the TiO2photoelectrode,ZnS deposited as passivation layer by successive ionic layer adsorption and reaction (SILAR). Counter electrode made from Cu2S components assemblely with photoelectrode to become the cell component. Wherein the different proportions of copper indium QDs synthesis cell component efficiency up to 7.5%, Mn-doped QDs its photoelectric conversion efficiency as high as 8.0%, and the electrochemical analysis to explore the internal QDSSCs of the electron transfer mechanism and the effect of electron transfer interface impedance of the effects on electronic transfer.

    摘要 I Abstract II 總目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池發展 2 1.2.1 第一代–矽晶太陽能電池 Crystalline silicon solar cells 2 1.2.2 第二代–薄膜太陽能電池 Thin film solar cells 3 1.2.3 第三代–敏化太陽能電池 Dye sensitized solar cells (DSSC) 4 1.3 研究動機 4 第二章 文獻回顧 6 2.1 量子點(Quantum Dots)特性 6 2.1.1 量子侷限效應Quantum Confinement Effect 7 2.1.2 衝擊離子化Impact ionization與歐傑再結合Auger recombination 10 2.1.3 迷你傳導帶效應 Minibands effect 11 2.2 量子點敏化太陽能電池Quantum Dots of Sensitized Solar cell (QDSSC) 12 2.2.1 基本原理 12 2.2.2 電池元件 14 2.2.3 量子點敏化劑製備方法 28 第三章 實驗方法 38 3.1 實驗藥品 38 3.1.1 透明導電玻璃 38 3.1.2 導電玻璃基板清洗 38 3.1.3 二氧化鈦薄膜光電極 38 3.1.4 量子點合成 38 3.1.5 ZnS鈍化層 39 3.1.6 電解液 39 3.1.7 Cu2S背電極 39 3.1.8 元件組裝 40 3.1.9 其他 40 3.2 實驗儀器 40 3.3 實驗流程大綱 42 3.4 導電玻璃清洗 42 3.5 光電極薄膜製備 43 3.6 量子點合成 43 3.6.1 前驅物母液的配製 44 3.6.2 不同銅銦比例量子點之合成 44 3.6.3 錳摻雜量子點合成 45 3.7 共吸附劑配製 45 3.8 背電極製備 45 3.8.1 旋轉塗佈法 45 3.8.2 化學浴沉積法 46 3.9 ZnS鈍化層沉積 46 3.9.1 前驅物溶液配製 46 3.9.2 ZnS鈍化層合成 47 3.10 電解液配製 47 3.11 元件封裝 47 第四章 實驗結果與討論 48 4.1 不同銅銦比例量子點材料分析 49 4.1.1 XRD表面繞射結構分析 49 4.1.2 TEM影像結構分析 50 4.1.3 UV-PL光譜性質分析 52 4.1.4 ICP-AES 質譜元素組成分析 53 4.2 錳摻雜於量子點材料分析 54 4.2.1 XRD表面繞射結構分析 54 4.2.2 UV-PL光譜性質分析 55 4.2.3 ICP-AES 質譜元素組成分析 56 4.2.4 EPR 電磁學性質分析 56 4.3 量子點太陽能電池元件分析 57 4.3.1 光電極上吸附量子點之結構分析 58 4.3.2 光電極上吸附量子點之光學分析 59 4.3.3 太陽光模擬光電轉換效率分析 60 4.3.4 IPCE入射光電轉換效率分析 63 4.3.5 EIS電化學阻抗分析 65 4.3.6 IMPS/IMVS光強度調制光電流/光電壓分析 67 第五章 結論與未來展望 70 參考文獻 71

    1. D. M. Chapin, C. Fuller and G. Pearson, J. Appl. Phys., 1954, 25, 676-677.
    2. J. Zhao, A. Wang, M. A. Green and F. Ferrazza, Appl. Phys. Lett., 1998, 73, 1991-1993.
    3. E. Centurioni and D. Iencinella, IEEE Electr. Device-L., 2003, 24, 177-179.
    4. D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla and A. Tiwari, J. Appl. Phys., 2005, 97, 084908.
    5. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402-403.
    6. B. O'Regan and M. Gratzel, Nature, 1991, 353, 737-740.
    7. A. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmüller and H. Weller, 1996, 1772-1778.
    8. A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich and J. F. Donegan, J. Phys. Chem. C, 2007, 111, 14628-14637.
    9. T. Takagahara and K. Takeda, Phys. Review B, 1992, 46, 15578.
    10. A. J. Nozik, Chem. Phys. Lett., 2008, 457, 3-11.
    11. G. Smestad, C. Bignozzi and R. Argazzi, Sol. Energ. Mat. Sol C., 1994, 32, 259-272.
    12. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik and M. C. Beard, Science, 2011, 334, 1530-1533.
    13. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson and J. C. Johnson, Chem. Rev., 2010, 110, 6873-6890.
    14. M. Hanna and A. Nozik, J. Appl. Phys., 2006, 100, 074510.
    15. B. Saleh and M. Teich, (John Wiley & Sons, New York, 1991).
    16. Y. Wang and N. Herron, J. Phy. Chem., 1991, 95, 525-532.
    17. M. Green, Curr. Opin. Solid State Mater. Sci., 2002, 6, 355-363.
    18. http://www.nanosysinc.com/what-we-do/quantum-dots/.
    19. Y. Zhang, Y. Liu, C. Li, X. Chen and Q. Wang, J. Phys. Chem. C, 2014, 118, 4918-4923.
    20. http://chuansong.me/n/865619.
    21. C. de Mello Donegá, Chem. Soc. Rev., 2011, 40, 1512-1546.
    22. A. Nozik, Phys. E, 2002, 14, 115-120.
    23. A. a. m. i. j. o. p. c. l. P.-C. Sinica, 楊明輝,”透明導電膜材料與成膜技術的新發展”,工業材料,第189期, 2000,pp.161~174.
    24. D. Fraser and H. Cook, J. Vac. Sci. Technol., 1977, 14, 147-151.
    25. L. Davis, Thin Solid Films, 1993, 236, 1-5.
    26. H. Lehmann and R. Widmer, Thin Solid Films, 1975, 27, 359-368.
    27. E. Shanthi, A. Banerjee, V. Dutta and K. Chopra, J. Appl. Phys., 1982, 53, 1615-1621.
    28. A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep., 2008, 63, 515-582.
    29. I. Bedja, S. Hotchandani and P. V. Kamat, J. Phy. Chem., 1994, 98, 4133-4140.
    30. G. Redmond, D. Fitzmaurice and M. Graetzel, Chem. Mater., 1994, 6, 686-691.
    31. K. Sayama, H. Sugihara and H. Arakawa, Chem. Mater., 1998, 10, 3825-3832.
    32. A. Turković and Z. C. Orel, Sol. Energ. Mat. Sol C., 1997, 45, 275-281.
    33. M. El Zayat, A. Saed and M. El-Dessouki, Int. J. Hydrogen Energy, 1998, 23, 259-266.
    34. M. Ramamoorthy, D. Vanderbilt and R. King-Smith, Phys. Review B, 1994, 49, 16721.
    35. R. Hengerer, B. Bolliger, M. Erbudak and M. Grätzel, Surf. Sci., 2000, 460, 162-169.
    36. V. Shklover, M.-K. Nazeeruddin, S. Zakeeruddin, C. Barbe, A. Kay, T. Haibach, W. Steurer, R. Hermann, H.-U. Nissen and M. Grätzel, Chem. Mater., 1997, 9, 430-439.
    37. A. Beltran, L. Gracia and J. Andres, J. Phys. Chem. B, 2006, 110, 23417-23423.
    38. 陳信宏,“染料敏化太陽能電池近期發展”,光連雙月刊,No.84,p.24,2009年11月.
    39. B. O’regan and M. Grfitzeli, Nature, 1991, 353, 737-740.
    40. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242-247.
    41. A. Hagfeldt and M. Graetzel, Chem. Rev., 1995, 95, 49-68.
    42. J. H. Bang and P. V. Kamat, ACS nano, 2009, 3, 1467-1476.
    43. W. Lee, J. Lee, S. Lee, W. Yi, S.-H. Han and B. W. Cho, Appl. Phys. Lett., 2008, 92, 153510.
    44. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank and A. J. Nozik, J. Phys. Chem. B, 2006, 110, 25451-25454.
    45. P. K. Santra, P. V. Nair, K. George Thomas and P. V. Kamat, J. Phys. Chem.Lett., 2013, 4, 722-729.
    46. F. Van den Broeck, R. Dierick, Z. Hens and J. Martins, presented at the 12th Chemistry conference for Young Scientists (ChemCYS 2014), 2014 (unpublished).
    47. C. H. Tsai, D. K. Mishra, C. Y. Su and J. M. Ting, Int. J. Energy Res., 2014, 38, 418-428.
    48. K. P. Kadlag, P. Patil, M. J. Rao, S. Datta and A. Nag, CrystEngComm, 2014, 16, 3605-3612.
    49. D. Pathak, T. Wagner, T. Adhikari and J. Nunzi, Synth. Met., 2015, 199, 87-92.
    50. M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu and B. A. Korgel, J. Phys. Chem.Lett., 2013, 4, 2030-2034.
    51. S. V. Kershaw, A. S. Susha and A. L. Rogach, Chem. Soc. Rev., 2013, 42, 3033-3087.
    52. R. Beaulac, P. I. Archer, S. T. Ochsenbein and D. R. Gamelin, Adv. Funct. Mater., 2008, 18, 3873-3891.
    53. D. J. Norris, A. L. Efros and S. C. Erwin, Science, 2008, 319, 1776-1779.
    54. Y. Dong, J. Choi, H.-K. Jeong and D. H. Son, J. Am. Chem. Soc., 2015, 137, 5549-5554.
    55. B. B. Srivastava, S. Jana and N. Pradhan, J. Am. Chem. Soc., 2010, 133, 1007-1015.
    56. H.-Y. Chen, T.-Y. Chen and D. H. Son, J. Phys. Chem. C, 2010, 114, 4418-4423.
    57. T. Kuroda, H. Ito, F. Minami and H. Akinaga, J. Luminescence, 1997, 72, 106-107.
    58. G. Manna, S. Jana, R. Bose and N. Pradhan, J. Phys. Chem.Lett., 2012, 3, 2528-2534.
    59. P. K. Santra and P. V. Kamat, J. Am. Chem. Soc., 2012, 134, 2508-2511.
    60. J. Luo, H. Wei, Q. Huang, X. Hu, H. Zhao, R. Yu, D. Li, Y. Luo and Q. Meng, Chem. Commun., 2013, 49, 3881-3883.
    61. J. Wang, Y. Li, Q. Shen, T. Izuishi, Z. Pan, K. Zhao and X. Zhong, J. Mater. Chem. A, 2016, 4, 877-886.
    62. P. Wu and X.-P. Yan, Chem. Soc. Rev., 2013, 42, 5489-5521.
    63. G. Halder and S. Bhattacharyya, J. Phys. Chem. C, 2015, 119, 13404-13412.
    64. J.-F. SHI, Y. FAN, X.-Q. XU, G. XU and L.-H. CHEN, Acta Phys.-Chim. Sin., 2012, 28, 857-864.
    65. M. Deng, S. Huang, Q. Zhang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Chem. Lett., 2010, 39, 1168-1170.
    66. Y.-Y. Yang, Q.-X. Zhang, T.-Z. Wang, L.-F. Zhu, X.-M. Huang, Y.-D. Zhang, X. Hu, D.-M. Li, Y.-H. Luo and Q.-B. Meng, Electrochimica Acta, 2013, 88, 44-50.
    67. Z. Yang, C.-Y. Chen, C.-W. Liu and H.-T. Chang, Chem. Commun., 2010, 46, 5485-5487.
    68. Z. Tachan, M. Shalom, I. Hod, S. Ruhle, S. Tirosh and A. Zaban, J. Phys. Chem. C, 2011, 115, 6162-6166.
    69. J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong and C.-S. Lee, J. Phys. Chem. C, 2012, 116, 19718-19723.
    70. X. Zhang, X. Huang, Y. Yang, S. Wang, Y. Gong, Y. Luo, D. Li and Q. Meng, ACS Appl. Mater. Interfaces, 2013, 5, 5954-5960.
    71. Y. Yang, L. Zhu, H. Sun, X. Huang, Y. Luo, D. Li and Q. Meng, ACS Appl. Mater. Interfaces, 2012, 4, 6162-6168.
    72. H.-J. Kim, L. Myung-Sik, C. V. Gopi, M. Venkata-Haritha, S. S. Rao and S.-K. Kim, Dalton Trans., 2015, 44, 11340-11351.
    73. H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S. M. Zakeeruddin and M. Grätzel, Nano Tech., 2008, 19, 424003.
    74. I. Zarazúa, E. De la Rosa, T. López-Luke, J. Reyes-Gomez, S. Ruiz, C. Angeles Chavez and J. Z. Zhang, J. Phys. Chem. C, 2011, 115, 23209-23220.
    75. P. P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. Mora-Seró and J. Bisquert, J. Phys. Chem. C, 2011, 116, 1579-1587.
    76. S. Wang, Q.-X. Zhang, Y.-Z. Xu, D.-M. Li, Y.-H. Luo and Q.-B. Meng, J. Power Sources, 2013, 224, 152-157.
    77. W. Li and X. Zhong, J. Phys. Chem.Lett., 2015, 6, 796-806.
    78. Y. Choi, M. Seol, W. Kim and K. Yong, J. Phys. Chem. C, 2014, 118, 5664-5670.
    79. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin, Nano letters, 2009, 9, 4221-4227.
    80. S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Nano Tech., 2009, 20, 295204.
    81. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban and U. Banin, Acs Nano, 2010, 4, 5962-5968.
    82. I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez and J. Bisquert, Nano Tech., 2008, 19, 424007.
    83. R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin and G. Cao, J. Phys. Chem. C, 2013, 117, 26948-26956.
    84. H. J. Lee, J. Bang, J. Park, S. Kim and S.-M. Park, Chem. Mater., 2010, 22, 5636-5643.
    85. U. Tohgha, K. Varga and M. Balaz, Chem. Commun., 2013, 49, 1844-1846.
    86. J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong and J. Bisquert, J. Am. Chem. Soc., 2013, 135, 15913-15922.
    87. J. Yang, T. Oshima, W. Yindeesuk, Z. Pan, X. Zhong and Q. Shen, J. Mater. Chem. A, 2014, 2, 20882-20888.
    88. X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo and Q. Meng, J. Mater. Chem., 2011, 21, 15903-15905.
    89. A. Sahasrabudhe and S. Bhattacharyya, Chem. Mater., 2015, 27, 4848-4859.
    90. X. Song, M. Wang, J. Deng, Z. Yang, C. Ran, X. Zhang and X. Yao, ACS Appl. Mater. Interfaces, 2013, 5, 5139-5148.
    91. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385-2393.
    92. K. Zhao, Z. Pan, I. Mora-Seró, E. Cánovas, H. Wang, Y. Song, X. Gong, J. Wang, M. Bonn and J. Bisquert, J. Am. Chem. Soc., 2015, 137, 5602-5609.
    93. J.-Y. Chang, C.-H. Li, Y.-H. Chiang, C.-H. Chen and P.-N. Li, ACS Appl. Mater. Interfaces, 2016,

    無法下載圖示 全文公開日期 2021/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE